Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes

HPLC determination of chlorate metabolism in bovine ruminal fluid
Ross C. Beier a, Michael E. Hume a; Robin C. Anderson a; Christy E. Oliver b; Todd R. Callaway a; Thomas S. Edrington a; David J. Nisbet a
a Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, College Station, TX, USA
b Department of Animal and Range Sciences, North Dakota State University, Fargo, ND, USA

Online Publication Date: 01 August 2007
To link to this article: DOI: 10.1080/03601230701544967
URL: http://dx.doi.org/10.1080/03601230701544967

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
HPLC determination of chlorate metabolism in bovine ruminal fluid

ROSS C. BEIER,1,* MICHAEL E. HUME,1 ROBIN C. ANDERSON,1 CHRISTY E. OLIVER,2 TODD R. CALLAWAY,1 THOMAS S. EDRINGTON,1 and DAVID J. NISBET1

1Southern Plains Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, 2881 F & B Road, College Station, TX 77845-4988, USA
2Department of Animal and Range Sciences, North Dakota State University, P.O. Box 5727 University Station, Fargo, ND 58105-5727, USA

Salmonella and Escherichia coli are two bacteria that are important causes of human and animal disease worldwide. Chlorate is converted in the cell to chlorite, which is lethal to these bacteria. An HPLC procedure was developed for the rapid analysis of chlorate (ClO3−), nitrate (NO3−), and nitrite (NO2−) ions in bovine ruminal fluid samples. Standard curves for chlorite, nitrite, nitrate, and chlorate were well defined linear curves with R2 values of 0.99846, 0.99106, 0.99854, and 0.99138, respectively. Concentrations of chlorite could not be accurately determined in bovine ruminal fluid because chlorite reacts with or binds a component(s) or is reduced to chloride in bovine ruminal fluid resulting in low chlorite measurements. A standard curve ranging from 25 to 150 ppm ClO3− ion was used to measure chlorate fortified into ruminal fluid. The concentration of chlorate was more rapidly lowered (P < 0.01) under anaerobic compared to aerobic incubation conditions. Chlorate alone or chlorate supplemented with the reductants sodium lactate or glycerol were bactericidal in anaerobic incubations. In anaerobic culture, the addition of sodium formate to chlorate-fortified ruminal fluid appeared to decrease chlorate concentrations; however, formate also appeared to moderate the bactericidal effect of chlorate against E. coli. Addition of the reductants, glycerol or lactate, to chlorate-fortified ruminal fluid did not increase the killing of E. coli at 24 h, but may be useful when the reducing equivalents are limiting as in waste holding reservoirs or composting systems required for intense animal production.

Keywords: Bovine ruminal fluid; Chlorate; Chlorite; Food safety; Glycerol; HPLC; Nitrate; Nitrite; Sodium formate; Sodium lactate

Introduction

Salmonella and Escherichia coli are Gram (−) enteropathogens. Salmonella is an important cause of human and animal disease worldwide,[1] and infection can cause serious illnesses or fatalities in the elderly and immunocompromised humans. The cost of medical care and lost productivity due to Salmonella infections in the United States were estimated at $2.3 billion per year in 1998 dollars.[2] The Centers for Disease Control and Prevention (CDC) estimated that each year in the United States over 1.3 million human illnesses, over 15,000 hospitalizations and 553 deaths are caused by foodborne transmission of Salmonella.[3] Pathogenic E. coli primarily cause three types of infections in humans: enteric, urinary tract, and septicemic infections.[4] Among shiga-toxin-producing E. coli strain O157:H7 is the most common.[5] The CDC estimated that in the United States over 62,000 human illnesses, over 1,800 hospitalizations and 52 deaths are caused each year by foodborne transmission of E. coli O157:H7.[3] The contamination of meat products with E. coli O157:H7 resulted in the recall of over 1 million pounds of meat in 2005.[6] Over the decade prior to 2005, contamination of meat products with E. coli O157:H7 and Salmonella resulted in the recall of over 61.6 and 3.9 million pounds of meat products, respectively.[6] Pathogen prevention strategies must be comprehensive and operative from farm-to-table,[7] and some risk assessment studies predict that strategies to reduce the pathogen load in the live animal prior to slaughter would significantly reduce human exposure.[8]
A promising anti-pathogen strategy targets a biochemical mechanism common in Gram (−) enteropathogens. Intracellular reduction of chlorate by nitrate reductase (NR) is lethal to E. coli and Salmonella,[9] Salmonella, like many members of the family Enterobacteriaceae, possess respiratory NR activity[10] that can reduce chlorate to cytotoxic chlorite,[11,12] whereas most gastrointestinal anaerobes lack NR and are not affected.[13] It was hypothesized that chlorate may be used as a tool for pathogen reduction.[14] The use of chlorate in veterinary and human medicine is not new,[15] for example, chlorate salts maybe added to tooth-pastes at concentrations up to 5% as permitted by the European Union.[15] However, the use of chlorate by the food industry in a preharvest pathogen reduction program is a novel concept.[13]

Our laboratory has conducted in vivo food animal experiments to test this concept.[14] Chlorate treatments were used in the drinking water of broiler chickens and significantly decreased S. Typhimurium in the crop contents,[16] and S. Typhimurium levels were further reduced in broilers that were first nitrate-adapted and then treated with chlorate.[17] Chlorate treatment via oral gavage of weaned pigs resulted in reduced cecal concentrations of Salmonella,[13] and reduced E. coli O157:H7 in the pig gut.[18] Escherichia coli O157:H7 in sheep were also reduced by chlorate supplementation.[19,20] Chlorate application to bovine ruminal fluid in vitro lowered the levels of E. coli O157:H7 and S. Typhimurium DT104 from 10^6 CFU to below the level of detection (≤10 CFU).[14] Escherichia coli concentrations were significantly lowered in ruminal contents and feces of chlorate-treated cows compared to untreated cows.[21] Chlorate treatment reduced E. coli and E. coli O157:H7 throughout the intestinal tract of cattle, but did not alter the total culturable anaerobic bacterial counts or the ruminal fermentation pattern.[22] Chlorate treatment of feedlot cattle significantly reduced E. coli by as much as 100-fold in the gut and by up to 10-fold on the hide at the rump. The highest treatment levels (500 mg/kg body weight) showed no adverse effects during our short-term treatments.[23,24]

Studies using [36Cl] labeled chlorate administered to rats and cattle found that most of the labeled chlorine was present as chloride,[25–28] and no evidence for the presence of chlorite was observed in any beef cattle tissues.[28] Some researchers have suggested that since E. coli O157:H7 contamination of beef products remains a persistent problem, and since residue studies have shown that the vast majority of the chlorate-related residues in edible tissues were present only as the chloride ion, further research on chlorate as a preharvest intervention strategy was warranted.[28] Studies are needed to examine potential chlorate, chlorite, and nitrate residues in ruminal fluid, and the affect of these residues on ruminal bacteria. Chlorate had been determined in well water by a colorimetric method,[29] in plasma and urine by a chlorate reductive method,[30] in produce rinse water,[31] and drinking water[32] by liquid chromatography, and residue studies were completed in beef cattle and swine tissues by quantifying dosed radioactive sodium [38Cl]chlorate.[27,28,33] A method for quantifying chlorate and the other ions in a complex milieu such as bovine ruminal fluid is needed. The objective of this study was to develop a rapid, quantitative method for the analysis of chlorate, chlorite, nitrate and nitrite in ruminal fluid; to evaluate the loss of chlorate ion during aerobic and anaerobic incubation of chlorate-fortified ruminal fluid supplemented with added reductants that may affect the formation of chlorite and the killing of E. coli; and to determine the effect of chlorate on wildtype E. coli in ruminal fluid.

Materials and methods

Reagents and materials

Ethylenediamine, potassium dichloroacetate, potassium iodide, sodium chlorite, sodium nitrite, sodium thiosulfate volumetric standard solution, and starch indicator were obtained from Aldrich (Milwaukee, WI). Sodium chlorate and sodium nitrate were obtained from J. T. Baker (VWR Scientific Products, Houston, TX). Water (H2O) used for dilution of standards and samples was produced on site by a reverse osmosis system obtained from Millipore Corp. (Bedford, MA), and was pyrogen-free. Water used for HPLC was double distilled.

Preparation of standards

Chlorite is susceptible to degradation by iron salts and chlorine, therefore, ethylenediamine (EDA) is used as a preservative for chlorite; EDA is also a recommended preservative for the determination of chlorate.[32] We have observed that the addition of EDA to ruminal samples also results in cleaner samples for HPLC analysis (data not shown). The EDA working solution was prepared by diluting 2.81 mL (41.58 mmol) of 99% EDA with H2O in a 25-mL volumetric flask, resulting in 100 mg/mL solution of EDA. The final concentration of EDA in standards and samples was 500 μg/mL. The chlorate (ClO_3^-) ion standard was made by dissolving sodium chlorate, 62.78 mg (0.59 mmol), in a 100-mL volumetric flask with H2O, resulting in a 100 μg/mL solution of EDA. The chlorite (ClO_2^-) ion standard solution was made by dissolving 44.3 mg NaClO_2 with 75.7% purity (0.37 mmol), in a 100-mL volumetric flask with H2O, resulting in a 500 μg/mL solution of ClO_3^- . Since high purity sodium chlorite is not commercially available, the simplest approach to determine the exact percent of NaClO_3 in the standard is to use the iodometric titration procedure.[32] The chlorite (ClO_2^-) ion standard solution was made by dissolving 44.3 mg NaClO_2 with 75.7% purity (0.37 mmol) (purity was determined by the iodometric titration method described below), in a 50-mL volumetric flask with the EDA working solution (250 μL) and H2O resulting in a 500 μg/mL solution of ClO_2^- . The nitrate (NO_3^-) ion standard was made by dissolving sodium nitrate, 68.54 mg (0.806 mmol), in a 100-mL volumetric flask with H2O, resulting in a 500 μg/mL solution of NO_3^- . The nitrite (NO_2^-) ion standard was made
Chromatographic separation was carried out with a 4-mm internal diameter × 250-μm IonPac® AS9-HC analytical column (Dionex Corp., Sunnyvale, CA) using 0.22-μL filtered (filter No. GSWP 047 00; Millipore Corporation, Bedford, MA) 9 mM Na2CO3 delivered at a flow rate of 1.0 mL/min. by a Dionex Gradient Pump (HPLC method according to manufacturers recommendations, Dionex). The solvent system was degassed using helium. Samples containing chloride were prepared in amber 11-mm crimp top auto-sampler vials (No. 12902; Pierce, Rockford, IL), and all other samples were prepared in clear 11-mm crimp-top auto-sampler vials (No. 12894; Pierce). The vials were sealed using crimp-top seals (No. 5181-1210; Hewlett Packard, Palo Alto, CA). Samples were introduced via a Spectra-physics SP8880 autosampler with an injection volume of 25 μL. The column’s effluent was monitored by a Pulsed Electrochemical Detector (Dionex).

High performance liquid chromatography (HPLC)

Disappearance of chlorate in anaerobic and aerobic ruminal fluid study

Ruminal contents were collected at approximately 08:00 am from a cannulated Jersey cow maintained on a rye grass pasture. The freshly collected contents were withdrawn from the cannula and filtered through a nylon paint strainer[36] into a 1-L vessel. When completely filled, the vessel was capped and returned to the laboratory for immediate (within 30 min) anaerobic (100% CO2) or aerobic distribution (10-mL volumes) to 160-mL crimp top culture vials, each having a diameter of approximately 50 mm. These vials were pre-loaded with small volumes of stock concentrations of chlorate (0.4 mL, 254 mM), and some vials also received 0.2 mL each of either sodium formate (1600 mM), sodium lactate (1600 mM), or glycerol (1600 mM). Vials were normalized to a final volume of 11 mL by addition of water achieving a final concentration of 770 ppm ClO3− in the samples. Vials loaded anaerobically were closed with rubber stoppers; those loaded aerobically were loosely covered with aluminum foil. The pH measured in
the unused ruminal fluid was 7.17. All vials were incubated at 39°C on a rotating table (128 rpm). Samples (2 mL) were collected from each vial at 0, 3, 6, and 24 h of incubation for enumeration of wildtype *E. coli* via plating of 10-fold serial dilutions (in 0.4 M sodium phosphate buffer, pH 6.5) on 3M *E. coli*/*Coliform Count petrifilm (3M Microbiology Products, St. Paul, MN), and for measurement of chlorate concentrations as described below.

Standard curve for disappearance of chlorate in ruminal fluid

The standard curve for chlorate disappearance was constructed over the range of 25–150 ppm chlorate ion concentration. The standard curve was generated by adding chlorate, EDA (5 μL), the IM solution (7.5 μL), and diluted with H2O to a total volume of 1-mL to produce standards containing 25, 50, 75, 100, and 150 ppm of chlorate ion. This series of HPLC standards was analyzed at the beginning of each sample set, and to ensure uniformity of analysis, an additional 75 ppm standard was placed after every 6th sample.

Sample preparation and calculations for disappearance of chlorate in ruminal fluid

A 125-μL aliquot of each ruminal fluid sample was mixed with EDA (5 μL) and IM solution (7.5 μL) and diluted with H2O (862.5 μL) to a 1-mL volume. Since ruminal fluid samples were diluted 1:8 for HPLC analysis, chlorate results were multiplied eightfold. In addition, evaporation from aerobically incubated vials at 3, 6, and 24 h was 4.21, 10.57 and 21.18%, respectively, and required adjustment for concentration by using the following correction factors: 0.9579, 0.8943, and 0.7882, respectively.

![HPLC tracings of 1/10 diluted ruminal fluid; the 25 ppm standard mix containing chlorate, chlorite, nitrate, nitrite, and dichloroacetate (IM); and 1/10 diluted ruminal fluid plus the 25 ppm standard mix.](image)

Fig. 1. HPLC tracings of 1/10 diluted ruminal fluid; the 25 ppm standard mix containing chlorate, chlorite, nitrate, nitrite, and dichloroacetate (IM); and 1/10 diluted ruminal fluid plus the 25 ppm standard mix.

![Standard curves shown as micro-siemens (μS) vs. concentration for chlorite, nitrite, nitrate, and chlorate. The error bars show the ± standard deviation of 4 determinations.](image)

Fig. 2. Standard curves shown as micro-siemens (μS) vs. concentration for chlorite, nitrite, nitrate, and chlorate. The error bars show the ± standard deviation of 4 determinations.
Concentrations of chlorate and log_{10} transformations of wildtype *E. coli* concentrations were analyzed for main effects of chlorate, reductant, aerobic or anaerobic atmosphere and their interactions as specified using a repeated measures analysis of variance (Statistix® 8 Analytical Software, Tallahassee, FL, USA). The net change values of the *E. coli* concentrations determined after 6 h of incubation were analyzed for main effects of chlorate, reductant, and their interactions by analysis of variance with a Tukey’s separation of means.

Results and discussion

The HPLC tracing of a standard mixture containing 25 ppm each of chlorite, nitrite, chlorate, nitrate, and dichloroacetate (the internal marker (IM)) is shown in Figure 1. Figure 1 also shows an HPLC tracing of a 1/10 dilution of ruminal fluid, and an HPLC tracing of a 1/10 dilution of ruminal fluid containing 25 ppm of chlorite, nitrite, chlorate, and nitrate ions. All of the ions, except for chlorite, appear to be well resolved. The chlorite ion is positioned in the chromatogram just within the tail of the unidentified preceding peak at 4.2 min. The retention times for chlorite, nitrite, IM, chlorate, and nitrate are 5.3, 9.2, 11.2, 13.9, and 15.2 min., respectively. The large peak at 7.1 min. is the chloride ion.

The standard curves for chlorite, nitrite, nitrate and chlorate are shown in Figure 2. Each data point in Figure 2 is the mean ± standard deviation of four separate determinations. The data are plotted as the detector response in
Table 1. Percent recovery of chlorite, nitrite, nitrate, and chlorate spiked in a 1/10 dilution of bovine ruminal fluid

<table>
<thead>
<tr>
<th>% Recovery</th>
<th>Chlorite</th>
<th>Nitrite</th>
<th>Nitrate</th>
<th>Chlorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration (ppm)</td>
<td>0.5 533.0 ± 0.2 82.9 ± 0.3 50.2 ± 0.1 53.8 ± 0.7</td>
<td>629.6 ± 7.0 139.2 ± 1.0 100.5 ± 0.5 91.2 ± 2.7</td>
<td>493.1 ± 4.1 120.2 ± 1.7 100.7 ± 0.3 105.2 ± 0.5</td>
<td>718.0 ± 4.1 147.5 ± 2.1 87.6 ± 0.5 94.2 ± 1.7</td>
</tr>
</tbody>
</table>

Mean values (n = 3) ± standard deviation of percent recovery.

micro-siemens (μS) vs. the concentration in ppm of each ion in the standard solution from 0.5 to 100 ppm. These are well defined linear curves with R² values of 0.99846, 0.99106, 0.99854, and 0.99138, for chlorite, nitrite, nitrate, and chlorate, respectively.

In the 1/10 dilution of ruminal fluid, comparison of the observed levels of the 4 spiked ions vs. the theoretically expected levels of the ions revealed that the distribution of data points for nitrite, nitrate, and chlorate follow the theoretical expected line (Fig. 3). However, the results for chlorite (Fig. 3a) were extremely low, unlike the results observed when the standards were diluted with H₂O. Chlorite may have reacted with or bound to some component(s) of the ruminal fluid, or it may have been reduced to chloride. We also have been unable to recover chlorite from chlorite-spiked raw hamburger (unpublished results). Chlorite was absent from tissues of cattle administered sodium [³⁶Cl]chlorate, while chloride and chlorate were the only radioactive chlo-

Fig. 4. Measurement of chlorate ion concentrations from chlorate-fortified aerobically and anaerobically incubated ruminal fluid. Sample collection times were 0, 3, 6, and 24 h.

Fig. 5. Measurement of wildtype E. coli concentrations during aerobic incubation with or without added reductant in the absence (A) or presence of added chlorate (B). Values are the mean from triplicate incubations, SD are less than 0.24 log₁₀ CFU/mL unless indicated otherwise. Sample collection times were 0, 3, 6, and 24 h.

Fig. 5. Measurement of wildtype E. coli concentrations during aerobic incubation with or without added reductant in the absence (A) or presence of added chlorate (B). Values are the mean from triplicate incubations, SD are less than 0.24 log₁₀ CFU/mL unless indicated otherwise. Sample collection times were 0, 3, 6, and 24 h.
HPLC determination of chlorate metabolism in bovine ruminal fluid

Fig. 6. Measurement of wildtype E. coli concentrations during anaerobic incubation with or without added reductant in the absence (A) or presence of added chlorate (B). Except for formate, E. coli concentrations decreased to the level of detection (10 cells/mL) by 24 h. Values are the mean from triplicate incubations, SD are less than 0.24 log10 CFU/mL unless indicated otherwise. Sample collection times were 0, 3, 6, and 24 h.

than chlorite became closer to theoretical. We hypothesize that the complex nature of ruminal fluid contributes in some way to the increased values at low concentrations of anions. It is interesting that chlorite shows a recovery of 82.9% at a concentration of 5 ppm. However, this result is probably caused by at least two phenomena, the increase in the observed ion level at lower ion concentrations and the loss of chlorite due to chlorite reacting or binding with a component(s) in ruminal fluid.

Chlorate was fortified into ruminal fluid at 770 ppm ClO₃⁻ to evaluate the disappearance of the ClO₃⁻ ion over a 24-h time period under aerobic and anaerobic (100% CO₂) conditions. Samples collected at 0, 3, 6, and 24 h of incubation were analyzed for disappearance of chlorate by HPLC over four different days using a standard curve ranging from 25 to 150 ppm, which was generated each day. The four standard curves showed consistent linearity with a mean R² value of 0.996973 ± 0.002816. Figure 4 shows the comparison of the level of ClO₃⁻ ion in ruminal fluid kept under aerobic conditions vs. the level of ClO₃⁻ ion in ruminal fluid kept under anaerobic conditions. Main effects of atmosphere (aerobic versus anaerobic) (P < 0.01) and time (P < 0.01) on ClO₃⁻ concentration was observed, with concentrations being reduced in ruminal fluid more during anaerobic than aerobic incubation (Fig. 4). Main effects of time (P < 0.01) and an atmosphere × time interaction (P < 0.01) were also observed on chlorate concentrations. Chlorate concentrations in anaerobic cultures were decreased from initial levels (P < 0.05) at all other sampling times, but during aerobic incubation chlorate concentrations were significantly lower (P < 0.05) than initial values only at 6 h, and not at 3 and 24 h (Fig. 4). Also readily apparent in the figures was that more than 100 ppm of the 770 ppm chlorate quantitatively added to each incubation at time 0 had disappeared by our first sampling time, which was within minutes of combining the ruminal fluid with chlorate. This suggests that chlorate uptake likely proceeded very quickly during both aerobic and anaerobic incubations. This finding is consistent with published reports that while nitrate uptake by the two polytopic membrane proteins NarK and NarU in E. coli is down-regulated by molecular oxygen, chlorate uptake occurs independent of the action of these nitrate uptake proteins and their control by oxygen.[37, 38] We observed a rebound in chlorate concentrations in anaerobically but not aerobically-grown incubations and speculate that this may result from release of intracellular chlorate due to lysis of the anaerobically grown cells. In anaerobically grown E. coli, chlorate is thought to be reduced intracellularly by respiratory nitrate reductase NarG to chlorite which subsequently kills the cells,[11, 12, 14] but reports on the extent of this reduction are lacking, particularly in cells that have been killed. Aerobically grown E. coli, however, do not reduce chlorate and are generally insensitive unless deficient in formate dehydrogenase activity.[39] Chlorate inhibition of E. coli during aerobic growth in pure culture was reported by Newman et al.,[40] but in that case the mechanism was not well defined. Our E. coli survivability curves (Figs. 5 and 6) support the concept that chlorate was bactericidal during anaerobic incubation, but only slightly inhibitory during aerobic incubation as indicated by a net increase in E. coli concentrations by 6 h of aerobic incubation compared to a net decrease in E. coli in anaerobic incubations (Table 2). Except for cultures with
Table 2. Main effects of added chlorate and reductant on net change in *E. coli* concentrations (Δ log10 colony forming units) determined after 6 h incubation

<table>
<thead>
<tr>
<th>Reductant</th>
<th>Without added chlorate</th>
<th>With added chlorate</th>
<th>Without added chlorate</th>
<th>With added chlorate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.82</td>
<td>1.12</td>
<td>−0.51</td>
<td>−1.42</td>
</tr>
<tr>
<td>Formate</td>
<td>1.79</td>
<td>1.42</td>
<td>−0.29</td>
<td>−0.78</td>
</tr>
<tr>
<td>Glycerol</td>
<td>1.97</td>
<td>1.16</td>
<td>−0.19</td>
<td>−1.99</td>
</tr>
<tr>
<td>Lactate</td>
<td>1.57</td>
<td>0.57</td>
<td>−0.47</td>
<td>−2.75</td>
</tr>
</tbody>
</table>

Chlorate effect \(P < 0.0001 \)
Reductant effect \(P < 0.0001 \)
Interaction \(P < 0.0001 \)
SEM 0.04

Tests for main effects of chlorate, reductant and their interaction were accomplished using a general analysis of variance with further separation of means using a Tukey’s procedure.

Means \((n = 3) \) with unlike superscripts differ \((P < 0.05) \).

Addition of formate, all cultures supplemented with chlorate and anaerobically incubated decreased in *E. coli* to the level of detection (10 cells/mL) by 24 h.

Addition of the reductants formate, glycerol, and lactate to ruminal fluid did not alter \((P > 0.05) \) chlorate disappearance in aerobic (data not shown) or anaerobic (Fig. 7) cultures, although the levels of ClO\(^-\)\(_3\) ion in anaerobic incubations were numerically lower at 24 h, particularly for those incubated with added sodium formate compared with anaerobic incubations without added reductant. However, we observed that when formate was added to the anaerobic chlorate-supplemented ruminal fluid cultures, it appeared to moderate the *E. coli*-killing activity of chlorate and this moderation is likely not due to the depletion of chlorate. Formate oxidation by an anaerobically expressed formate dehydrogenase is reported to protect the respiratory chain in stationary cells of *E. coli* and *Salmonella* and to prevent its disruption by host-produced antimicrobial peptides.[41] However, whether such a mechanism was active here is not known. Reductant by time interactions were not observed on chlorate ion concentrations \((P > 0.05) \).

Conclusion

The analytical method presented here for nitrite, nitrate, and chlorate in ruminal fluid is a simple and quick method for determining the levels of these ions. Although these ions are easily observed at low concentration (0.5 ppm) in ruminal fluid, the accuracy of our assay method at low levels is extremely poor. Due to the reactivity of chlorite with ruminal fluid component(s), levels of chlorite in ruminal fluid was not accurately determined.

By using the described method of chlorate determination in ruminal fluid with a standard curve ranging from 25 to 150 ppm we were able to demonstrate a more rapid \((P < 0.01) \) elimination of ClO\(^-\)\(_3\) ion levels in chlorate-fortified ruminal fluid during anaerobic than during aerobic incubation conditions. Also, in chlorate-fortified anaerobically-incubated ruminal fluid, addition of the reductant formate appeared to decrease 24-h chlorate concentrations compared with incubations without formate; however, the addition of sodium formate appeared to moderate the bactericidal effect of chlorate against *E. coli*.

This work demonstrates that chlorate fortification of ruminal fluid results in the killing of *E. coli* bacteria under anaerobic conditions. Based upon the suggestive results
obtained with the addition of the reductants glycerol and lactate to chlorate-fortified ruminal fluid, further studies probing how these reductants are involved in decreasing *E. coli* are warranted. The addition of reductants in chlorate treatments may be necessary, particularly when reducing equivalents may be limiting, such as when cattle are subjected to an extended transit or during a fast, or during extended composting of cow manure for use in produce production. The applications of chlorate treatment to aid in decontamination and on-farm pathogen reduction strategies are being investigated in animals. However, an investigation using chlorate to reduce the pathogen levels in waste holding reservoirs like swine waste lagoons or composting systems required for intense animal production is suggested.

References