Southern Oscillation Effects on Daily Precipitation in the Southwestern United States

D. A. Woolhiser and T. O. Keefer

Agricultural Research Service, U.S. Department of Agriculture, Tucson, Arizona

K. T. Redmond

Western Regional Climate Center, Reno, Nevada

The effect of the Southern Oscillation on daily precipitation in the southwestern United States is examined by using the Southern Oscillation Index (SOI) to perturb parameters of a stochastic daily precipitation model. Daily precipitation is modeled with a Markov chain-mixed exponential model and seasonal variability of model parameters is described by Fourier series. The hypothesized linkage between the SOI and the model parameters is of the form \(G_i(N, t) = G_i(t) + b_i S(N, t - \tau_i) \) where \(G_i(N, t) \) is the perturbed parameter \(i \) for day \(t \) of year \(N \), \(G_i(t) \) is the annually periodic parameter \(i \) for day \(t \), \(b_i \) is a coefficient, \(S \) is the SOI, and \(\tau_i \) is a lag in days. Daily precipitation data for 27 stations in California, Nevada, Arizona, and New Mexico were analyzed. Perturbations of the log of the dry-dry transition probability resulted in statistically significant improvements in the log likelihood function for 23 stations and perturbations of the mean daily rainfall resulted in significant increases for 18 stations. The most common lag identified was 90 days, suggesting the possibility of conditional simulations of daily precipitation. Seasonal effects were detected, confirming the results of previous analysis with groups of stations.

INTRODUCTION

The coupled atmosphere-ocean system exemplified by the El Nino-Southern Oscillation (ENSO) and its impact on weather and weather-related phenomena has recently been the subject of much scientific interest. Several studies have shown statistical relationships between ENSO and weather patterns and precipitation [Caviedes, 1975, 1984; Yarnal and Diaz, 1986; Andrade and Sellers, 1988; Kiladis and Diaz, 1989; Ropelewski and Halpert, 1986, 1987, 1989, 1990; Schonher and Nicholson, 1989; Redmond and Koch, 1991]. Others have investigated the relationship between ENSO and precipitation dependent phenomena such as tree growth [Lough and Fritts, 1985], fire scars [Swetnam and Betancourt, 1990], and floods [Webb and Betancourt, 1990].

Stochastic models of daily precipitation with annually periodic parameters usually do not preserve the variances of monthly and annual precipitation [Buishand, 1977; Zucchini and Adamson, 1984; Woolhiser et al., 1988]. This characteristic underestimation may be due to real long-term trends in precipitation, changes in data collection techniques or in rain gage exposure, model inadequacies, and/or the existence of large-scale atmospheric circulation patterns that do not exhibit annual periodicities. The Southern Oscillation (SOI) is an example of such a pattern and is defined as "a coherent variation of barometric pressures at interannual intervals that is related to weather phenomena on a global scale, particularly in the tropics and subtropics" [Enfield, 1989, p. 161]. The SOI is quantitatively described by the SOI, the time series of the anomalies of atmospheric pressure differences between Papeete, Tahiti, and Darwin, Australia.

The SOI is well correlated with equatorial sea surface temperatures in the Eastern Pacific [Rasmussen and Wallace, 1983].

Techniques to identify ENSO effects include (1) regressions between annual or seasonal precipitation for groups of stations and SOI and (2) testing for differences in the mean precipitation between years classified as ENSO or non-ENSO. Woolhiser [1992] proposed a new technique to identify ENSO effects on precipitation. The essence of this method is to use the SOI as a function to perturb the parameters of a stochastic daily precipitation model. In this model the occurrence of wet days is described by a first-order Markov chain, the distribution of precipitation depth, given a wet day, is described by a mixed exponential distribution, and Fourier series are used to describe seasonal variations in the five parameters required. In a preliminary study Woolhiser [1992] detected SOI effects on the dry-dry transition probabilities of the first-order Markov chain for four Arizona stations and two Idaho stations but did not detect an effect for two Idaho stations and three Oregon stations. However, he did find significant effects on the mean daily precipitation (given a wet day) for all stations. The effects in the Southwest were opposite of those in the Northwest with negative SOI (El Nino) leading to more frequent precipitation and increased depths of daily precipitation in Arizona. The most frequent lag was about 90 days with the SOI leading precipitation. Horel and Wallace [1981] have pointed out the existence of a lagged connection between the tropical Pacific and higher latitudes in a model atmosphere.

The objective of the research reported here was to use the procedure suggested by Woolhiser [1992] to analyze SOI impacts on precipitation in the southwestern United States including stations in California, Nevada, Arizona, and New Mexico.

Copyright 1993 by the American Geophysical Union.
MODEL OF DAILY PRECIPITATION

Occurrence

We will assume that the daily occurrence of precipitation can be described by a first-order Markov chain. Let

\[X(t) = 0 \quad \text{if day} \ t \ \text{is dry} \quad t = t_1, \ldots, t_T \quad (1a) \]

\[X(t) = 1 \]

if day \(t \) has rain equal to or greater than a threshold, \(d \) \(\quad (1b) \)

Let the daily transition probabilities be written as

\[P_{ij}(t) = P[X(t) = j | X(t - 1) = i] \quad i, j = 0, 1 \quad (2) \]

Because \(P_{00}(t) + P_{11}(t) = 1 \), only two parameters are required for each day. \(P_{00}(t) \) and \(P_{10}(t) \) were used in this study.

Amount

Let \(Y(t) \) be the amount of precipitation on day \(t \) when \(X(t) = 1 \). We assume that \(Y(t) \) is serially independent and is also independent of \(X(t - 1) \). Let the random variable \(U(t) = Y(t) - d \) be distributed as a mixed exponential (ME)

\[f_U(u) = \alpha(t) \beta(t) \exp[-u/\beta(t)] \]

\[+ [1 - \alpha(t)]\delta(t) \exp[-u/\delta(t)] \quad (3) \]

where \(0 < u < \infty \), \(d \) is a threshold (normally 0.01 inch or 0.25 mm), \(0 < \alpha(t) < 1 \), and \(0 < \beta(t) < \delta(t) \). The mean \(\mu(t) \) is given by

\[\mu(t) = \alpha(t) \beta(t) + [1 - \alpha(t)]\delta(t) \quad (4a) \]

and the variance is

\[\sigma^2(t) = 2\alpha(t)\beta(t)^2 + 2[1 - \alpha(t)]\delta(t)^2 \]

\[- \{\alpha(t)\beta(t) + [1 - \alpha(t)]\delta(t)\}^2 \quad (4b) \]

Seasonal Variability

To account for the seasonal variability of the parameters of the Markov chain-mixed exponential model, the parameters \(p_{00}(t) \), \(p_{10}(t) \), \(\alpha(t) \), \(\beta(t) \), and \(\mu(t) \) are written in the polar form of a finite Fourier series:

\[G_i(t) = G_{0i} + \sum_{k=1}^{m_i} [C_{ik} \sin(2\pi t k/365 + \phi_{ik})] \quad (5) \]

where \(i = 1, 2, \ldots, 5 \), \(G_i(t) \) is the value of the \(i \)th parameter on day \(t \), \(m_i \) is the maximum number of harmonics, \(G_{0i} \) is the mean, \(C_{ik} \) is the amplitude of the \(k \)th harmonic, and \(\phi_{ik} \) is the phase angle of the \(k \)th harmonic for the \(i \)th parameter.

So that constraints need not be imposed, the logit transform of the transition probabilities are fit with Fourier series as demonstrated by Stern and Coe [1984] and Zucchini and Adamson [1984]:

\[g_{ij}(t) = \log \{ \pi_{ij}(t)[1 - \pi_{ij}(t)] \} \quad -\infty < g_{ij}(t) < +\infty \quad (6) \]

The transition probabilities are obtained by the inverse transform

\[p_{ij}(t) = \exp \{ g_{ij}(t)/[1 + \exp \{ g_{ij}(t) \}] \} \quad (7) \]

SOI perturbation linkage. To utilize the SOI as a perturbing factor for the daily precipitation model, we must hypothesize the form of the linkage between the SOI and model parameters. Woolhiser [1992] used the following linear form:

\[G_i(N, t) = G_i(t) + b_i S(N, t - \tau_i) \quad (8) \]

where \(G_i(N, t) \) is the perturbed parameter \(i \) on day \(t \) of year \(N \), and the coefficient \(b_i \) and the lag in days \(\tau_i \) are parameters to be estimated from the data and \(S(t) \) is the SOI on day \(t \). The logits of both Markov chain transition probabilities, \(g_{00}(t) \) and \(g_{10}(t) \), and the mean of the ME, \(\mu(t) \), were assumed to be affected by the SOI. All perturbations in the mean \(\mu(t) \) were transferred to the parameter \(\delta(t) \), which can be interpreted as the mean of the largest exponential distribution in the mixture. From (4a) and (4b) we note that an increase in \(\mu(t) \) due to perturbation by the SOI will also lead to an increase in the variance \(\sigma^2(t) \).

Identification of parameters. The parameters were identified in a two-stage procedure. First, the Fourier coefficients that describe the purely periodic seasonal variation of the parameters were estimated for each station. Then the SOI linkage parameters were estimated independently. The Fourier coefficients for the logits, \(g_{00}(t) \) and \(g_{10}(t) \), were estimated by maximum likelihood techniques as described in the
TABLE 1. Statistics of Precipitation Stations Analyzed

<table>
<thead>
<tr>
<th>Station</th>
<th>Elevation Above Sea Level, m</th>
<th>Length of Record, years</th>
<th>Annual Precipitation Mean, mm</th>
<th>Standard Deviation, mm</th>
<th>Annual No. of Wet Days Mean, days</th>
<th>Standard Deviation, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiricahua National Monument</td>
<td>1615</td>
<td>40</td>
<td>485.14</td>
<td>130.56</td>
<td>70.63</td>
<td>12.37</td>
</tr>
<tr>
<td>Flagstaff</td>
<td>2105</td>
<td>32</td>
<td>526.29</td>
<td>140.21</td>
<td>77.72</td>
<td>13.76</td>
</tr>
<tr>
<td>Florence</td>
<td>455</td>
<td>55</td>
<td>248.16</td>
<td>84.58</td>
<td>38.55</td>
<td>9.35</td>
</tr>
<tr>
<td>Miami</td>
<td>1095</td>
<td>55</td>
<td>473.71</td>
<td>149.86</td>
<td>58.55</td>
<td>11.81</td>
</tr>
<tr>
<td>Phoenix</td>
<td>335</td>
<td>33</td>
<td>76.78</td>
<td>67.56</td>
<td>34.39</td>
<td>8.45</td>
</tr>
<tr>
<td>Prescott</td>
<td>1630</td>
<td>80</td>
<td>492.76</td>
<td>133.86</td>
<td>65.21</td>
<td>12.87</td>
</tr>
<tr>
<td>Springfield</td>
<td>2120</td>
<td>77</td>
<td>303.53</td>
<td>83.56</td>
<td>61.96</td>
<td>15.93</td>
</tr>
<tr>
<td>Tucson</td>
<td>735</td>
<td>94</td>
<td>282.70</td>
<td>88.90</td>
<td>48.93</td>
<td>10.37</td>
</tr>
<tr>
<td>Wickenburg</td>
<td>630</td>
<td>38</td>
<td>272.29</td>
<td>97.03</td>
<td>36.95</td>
<td>7.51</td>
</tr>
<tr>
<td>Walnut Gulch</td>
<td>1272</td>
<td>33</td>
<td>305.31</td>
<td>82.55</td>
<td>53.61</td>
<td>13.07</td>
</tr>
<tr>
<td>Willcox</td>
<td>1280</td>
<td>30</td>
<td>322.33</td>
<td>97.79</td>
<td>59.70</td>
<td>12.74</td>
</tr>
<tr>
<td>Yuma</td>
<td>35</td>
<td>31</td>
<td>73.66</td>
<td>52.07</td>
<td>15.81</td>
<td>7.51</td>
</tr>
<tr>
<td>California</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hetch Hetchy</td>
<td>1180</td>
<td>58</td>
<td>863.85</td>
<td>248.41</td>
<td>70.33</td>
<td>13.58</td>
</tr>
<tr>
<td>Nevada City</td>
<td>790</td>
<td>55</td>
<td>1,398.27</td>
<td>376.94</td>
<td>81.76</td>
<td>13.21</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>130</td>
<td>62</td>
<td>143.51</td>
<td>86.87</td>
<td>17.71</td>
<td>7.13</td>
</tr>
<tr>
<td>Pomonia</td>
<td>260</td>
<td>55</td>
<td>436.63</td>
<td>181.36</td>
<td>36.85</td>
<td>9.69</td>
</tr>
<tr>
<td>Riverside</td>
<td>275</td>
<td>54</td>
<td>259.59</td>
<td>112.52</td>
<td>35.20</td>
<td>8.86</td>
</tr>
<tr>
<td>Sacramento</td>
<td>10</td>
<td>55</td>
<td>469.65</td>
<td>155.70</td>
<td>58.80</td>
<td>12.10</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>35</td>
<td>50</td>
<td>430.28</td>
<td>152.15</td>
<td>34.76</td>
<td>8.28</td>
</tr>
<tr>
<td>Susanville</td>
<td>1265</td>
<td>58</td>
<td>362.46</td>
<td>124.21</td>
<td>62.05</td>
<td>12.88</td>
</tr>
<tr>
<td>Tahoe</td>
<td>1900</td>
<td>55</td>
<td>806.96</td>
<td>271.02</td>
<td>78.82</td>
<td>13.88</td>
</tr>
<tr>
<td>Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minden</td>
<td>1440</td>
<td>44</td>
<td>214.12</td>
<td>64.77</td>
<td>41.50</td>
<td>11.30</td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuquerque</td>
<td>1620</td>
<td>55</td>
<td>215.14</td>
<td>63.25</td>
<td>60.02</td>
<td>12.48</td>
</tr>
<tr>
<td>Cimarron</td>
<td>1960</td>
<td>55</td>
<td>384.81</td>
<td>96.52</td>
<td>65.13</td>
<td>14.48</td>
</tr>
<tr>
<td>Clayton</td>
<td>1525</td>
<td>55</td>
<td>377.70</td>
<td>136.40</td>
<td>65.04</td>
<td>14.47</td>
</tr>
<tr>
<td>Clovis</td>
<td>1305</td>
<td>55</td>
<td>440.18</td>
<td>161.80</td>
<td>53.11</td>
<td>11.68</td>
</tr>
<tr>
<td>Socorro</td>
<td>1410</td>
<td>52</td>
<td>224.03</td>
<td>67.36</td>
<td>44.81</td>
<td>10.83</td>
</tr>
</tbody>
</table>

The coefficients for the ME parameters, α, $\beta(t)$, and $\mu(t)$ were estimated by numerical maximum likelihood methods described by Woolhiser and Roldan [1986]. The parameter α was considered to be time invariant as they recommended.

By incorporating the SOI perturbations as given by (8) the log likelihood function can be written as a function of the parameters b_i and τ_j. It can be shown that the log likelihood functions for the dry-dry transitions are independent of the log likelihood functions for the wet-dry transitions [Woolhiser and Pegram, 1979]. Thus the parameters b_{00}, b_{10}, τ_{00}, τ_{10}, b_{μ}, and τ_{μ} can be estimated by a series of three bivariate optimizations.

ANALYSIS OF DATA

Daily precipitation data were obtained for 27 stations in California, Nevada, Arizona, and New Mexico. They were chosen to provide a sharp contrast between the Mediterranean climate of southern California and the predominantly summer precipitation regime of eastern New Mexico. They also sampled a wide range in elevation and mean annual precipitation. Station locations are shown in Figure 1, and a list of the stations, station elevations, and some statistical characteristics of the precipitation regimes are shown in Table 1.

![Fig. 2. Change in log likelihood function due to setting b_{00} to 0 for each month.](image-url)
TABLE 2. Effect of SOI Perturbations of the Logit of the Markov Chain Dry-Dry Transition Probability

<table>
<thead>
<tr>
<th>Station</th>
<th>Unperturbed Log Likelihood</th>
<th>Increase Over Perturbed Log Likelihood</th>
<th>700-days</th>
<th>One Season Unperturbed</th>
<th>Increase Over Perturbed Log Likelihood</th>
<th>700-days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Arizona</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiricahua National Monument</td>
<td>-5,877.764</td>
<td>9.984</td>
<td>+0.12</td>
<td>30</td>
<td>1.720</td>
<td>+0.14</td>
</tr>
<tr>
<td>Flagstaff</td>
<td>-5,149.836</td>
<td>6.350</td>
<td>+0.11</td>
<td>150</td>
<td>1.988</td>
<td>+0.13</td>
</tr>
<tr>
<td>Florence</td>
<td>-6,028.583</td>
<td>6.900</td>
<td>+0.10</td>
<td>90</td>
<td>1.440</td>
<td>+0.12</td>
</tr>
<tr>
<td>Miami</td>
<td>-7,584.766</td>
<td>7.641</td>
<td>+0.10</td>
<td>90</td>
<td>3.632</td>
<td>+0.13</td>
</tr>
<tr>
<td>Phoenix</td>
<td>-3,306.461</td>
<td>5.453</td>
<td>+0.13</td>
<td>0</td>
<td>2.163</td>
<td>+0.16</td>
</tr>
<tr>
<td>Prescott</td>
<td>-8,036.973</td>
<td>9.148</td>
<td>+0.11</td>
<td>0</td>
<td>1.193</td>
<td>+0.12</td>
</tr>
<tr>
<td>Springerville</td>
<td>-8,110.575</td>
<td>24.325</td>
<td>+0.17</td>
<td>90</td>
<td>4.295</td>
<td>+0.19</td>
</tr>
<tr>
<td>Tucson</td>
<td>-6,861.882</td>
<td>11.178</td>
<td>+0.12</td>
<td>90</td>
<td>2.459</td>
<td>+0.15</td>
</tr>
<tr>
<td>Walnut Gulch</td>
<td>-4,140.268</td>
<td>10.500</td>
<td>+0.15</td>
<td>90</td>
<td>2.650</td>
<td>+0.18</td>
</tr>
<tr>
<td>Wickenburg</td>
<td>-3,923.870</td>
<td>7.667</td>
<td>+0.14</td>
<td>90</td>
<td>0.776</td>
<td>+0.15</td>
</tr>
<tr>
<td>Willcox</td>
<td>-4,142.630</td>
<td>9.882</td>
<td>+0.14</td>
<td>90</td>
<td>0.843</td>
<td>+0.15</td>
</tr>
<tr>
<td>Yuma</td>
<td>-1,717.268</td>
<td>6.723</td>
<td>+0.19</td>
<td>90</td>
<td>2.544</td>
<td>+0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>California</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatch Hetchy</td>
<td>-7,641.140</td>
<td>6.397</td>
<td>+0.09</td>
<td>0</td>
<td>1.680</td>
<td>+0.11</td>
</tr>
<tr>
<td>Nevada City</td>
<td>-7,848.420</td>
<td>1.517*</td>
<td>+0.05</td>
<td>240</td>
<td>1.987</td>
<td>+0.07</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>-3,269.061</td>
<td>17.360</td>
<td>+0.15</td>
<td>120</td>
<td>4.184</td>
<td>+0.20</td>
</tr>
<tr>
<td>Pomona</td>
<td>-5,153.902</td>
<td>3.430</td>
<td>+0.08</td>
<td>130</td>
<td>3.782</td>
<td>+0.12</td>
</tr>
<tr>
<td>Riverside</td>
<td>-4,985.675</td>
<td>10.520</td>
<td>-0.14</td>
<td>120</td>
<td>1.730</td>
<td>+0.16</td>
</tr>
<tr>
<td>Sacramento</td>
<td>-6,763.485</td>
<td>3.470</td>
<td>+0.07</td>
<td>130</td>
<td>0.922</td>
<td>+0.08</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>-4,024.504</td>
<td>3.867</td>
<td>+0.11</td>
<td>330</td>
<td>1.258</td>
<td>+0.13</td>
</tr>
<tr>
<td>Susanville</td>
<td>-7,777.478</td>
<td>1.828*</td>
<td>+0.05</td>
<td>120</td>
<td>0.970</td>
<td>+0.06</td>
</tr>
<tr>
<td>Tahoe</td>
<td>-8,472.088</td>
<td>1.386*</td>
<td>+0.04</td>
<td>0</td>
<td>2.586</td>
<td>+0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minden</td>
<td>-5,107.768</td>
<td>1.475*</td>
<td>+0.05</td>
<td>0</td>
<td>2.226</td>
<td>+0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuquerque</td>
<td>-8,245.569</td>
<td>10.133</td>
<td>+0.10</td>
<td>120</td>
<td>5.572</td>
<td>+0.14</td>
</tr>
<tr>
<td>Cimarron</td>
<td>-8,305.203</td>
<td>8.605</td>
<td>+0.09</td>
<td>60</td>
<td>1.384</td>
<td>+0.11</td>
</tr>
<tr>
<td>Clayton</td>
<td>-8,547.185</td>
<td>5.930</td>
<td>+0.08</td>
<td>90</td>
<td>3.931</td>
<td>+0.13</td>
</tr>
<tr>
<td>Clovis</td>
<td>-7,597.107</td>
<td>6.582</td>
<td>+0.09</td>
<td>90</td>
<td>2.955</td>
<td>+0.13</td>
</tr>
<tr>
<td>Socorro</td>
<td>-6,339.205</td>
<td>5.119</td>
<td>-0.09</td>
<td>360</td>
<td>1.034</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

SOI, Southern Oscillation Index.

*No significant increase in log likelihood function.

Fig. 3. Seasonal effects: Markov chain.
TABLE 3. Effect of SOI Perturbations of the Mean of the Mixed Exponential Distribution

<table>
<thead>
<tr>
<th>Station</th>
<th>All Year Perturbed</th>
<th>One Season Unperturbed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unperturbed Log Likelihood</td>
<td>Increase Over Unperturbed Log Likelihood</td>
</tr>
<tr>
<td>Chiricahua National Monument</td>
<td>1,283.297</td>
<td>1.659*</td>
</tr>
<tr>
<td>Flagstaff</td>
<td>1,106.610</td>
<td>3.636</td>
</tr>
<tr>
<td>Florence</td>
<td>1,008.434</td>
<td>2.896</td>
</tr>
<tr>
<td>Miami</td>
<td>853.498</td>
<td>2.453</td>
</tr>
<tr>
<td>Phoenix</td>
<td>872.973</td>
<td>3.207</td>
</tr>
<tr>
<td>Prescott</td>
<td>1,616.810</td>
<td>3.772</td>
</tr>
<tr>
<td>Springerville</td>
<td>3,087.966</td>
<td>1.172*</td>
</tr>
<tr>
<td>Tucson</td>
<td>1,720.264</td>
<td>4.422</td>
</tr>
<tr>
<td>Walnut Gulch</td>
<td>1,692.488</td>
<td>4.238</td>
</tr>
<tr>
<td>Wickenburg</td>
<td>462.805</td>
<td>2.202</td>
</tr>
<tr>
<td>Wilcox</td>
<td>1,266.781</td>
<td>1.749*</td>
</tr>
<tr>
<td>Yuma</td>
<td>451.237</td>
<td>0.643*</td>
</tr>
<tr>
<td>Hetch Hetchy</td>
<td>-549.253</td>
<td>0.708*</td>
</tr>
<tr>
<td>Nevada City</td>
<td>-2,063.768</td>
<td>3.029</td>
</tr>
<tr>
<td>Palm Springs</td>
<td>334.003</td>
<td>1.531*</td>
</tr>
<tr>
<td>Pomona</td>
<td>-89.719</td>
<td>5.639</td>
</tr>
<tr>
<td>Riverside</td>
<td>710.478</td>
<td>4.426</td>
</tr>
<tr>
<td>Sacramento</td>
<td>1,134.103</td>
<td>10.116</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>-31.530</td>
<td>3.805</td>
</tr>
<tr>
<td>Susanville</td>
<td>2,142.940</td>
<td>5.735</td>
</tr>
<tr>
<td>Tahoe</td>
<td>403.398</td>
<td>3.197</td>
</tr>
<tr>
<td>Minden</td>
<td>1,288.167</td>
<td>0.769*</td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuquerque</td>
<td>3,876.325</td>
<td>2.668</td>
</tr>
<tr>
<td>Cimarron</td>
<td>2,005.777</td>
<td>1.574*</td>
</tr>
<tr>
<td>Clayton</td>
<td>2,552.633</td>
<td>3.939</td>
</tr>
<tr>
<td>Clovis</td>
<td>746.483</td>
<td>1.146*</td>
</tr>
<tr>
<td>Socorro</td>
<td>1,789.224</td>
<td>2.707</td>
</tr>
</tbody>
</table>

SOI, Southern Oscillation Index.
*No significant increase in log likelihood function.

standardized monthly sea level pressure at Papeete, Tahiti, minus the standardized monthly sea level pressure at Darwin, Australia. Because only monthly values were available, \(S(N, t) \) was represented as a step function.

Results of perturbing the periodic logit function \(g_{00}(t) \) are shown in Table 2, columns 3–5. Only lags of multiples of 30 days were examined in the algorithm to search for the maximum likelihood function of \(b_\mu \) and \(\tau_\mu \). The Akaike information criterion (AIC) [Akaike, 1974] was used to determine if the SOI perturbations led to significant increases in the log likelihood functions. The increase in log likelihood due to SOI perturbations led to a minimum AIC for 23 of the 27 stations. The four stations not showing an increase are located in the same geographic area near the Sierra Nevada mountains. In all but one case (Socorro, New Mexico) the optimum coefficient \(b_{00} \) ranges from +0.08 to +0.19, but is remarkably consistent from southern California to eastern New Mexico in spite of differences in annual precipitation, elevation, and seasonal patterns. The sign of the coefficient indicates that a negative SOI leads to an increase in the number of wet days. The optimum lag ranges from 0 to 360 days with 90 days being the most frequent value. There is a tendency for longer lags for the California stations. At each location where a significant increase in the log likelihood function was detected, several different lag values produce significant, if not optimal, increases. A 90-day lag resulted in significant increases at 19 of the 23 locations. Perturbing \(b_{10} \) did not result in significant increases in the log likelihood function. Thus for negative SOI, a dry day is more likely to be followed by a wet day, but there is no increase in the probability of a wet day following a wet day. Also, the square of the SOI was used as the perturbing factor for five stations, but this resulted in lower maximum likelihood functions for most cases.

Results of perturbing the seasonally varying mean of the mixed exponential distribution, \(\mu(t) \), are shown in Table 3 (third, fourth, and fifth columns from the left). Generally, for the 18 locations having a significant increase in the log likelihood function, the coefficients \(b_\mu \) are negative, which means that with a negative SOI (El Niño condition) the mean and the variance of daily precipitation increases. Two locations, both in the Sierra Nevadas, have positive coefficients indicating decreased daily mean precipitation, a condition found previously at northwestern United States sites [Wood-
maximum assuming more importance at higher elevations and the summertime maximum being more important in the eastern part of the region. Much of the domain considered here is under the influence of Pacific air masses for at least several months of the year [Bryson and Hare, 1974].

Most numerical and observational studies of the extratropical response to tropical sea surface temperature anomalies have focused on winter, when the Northern Hemisphere circulation is more vigorous and extends farther southward, offering more opportunities for tropical–midlatitude interaction [Horel and Wallace, 1981; Rasmussen and Wallace, 1983; Schoner and Nicholson, 1989]. Redmond and Koch [1991] found much stronger associations in winter than in summer between precipitation and SOI in this part of the west. The relationship between fire evidence and SOI found by Swetnam and Betancourt [1990] centered on growing conditions in spring as influenced by previous precipitation. Other work by Ropelewski and Halpert [1986, 1989], Schoner and Nicholson [1989], and others have dealt only with winter precipitation. Cayan and Peterson [1989] show that ENSO years tend to be characterized by split flow in winter, with the polar jet crossing the coast in Alaska, and a subtropical jet from the Pacific crossing the southern United States. In “anti-ENSO” years the main jet crosses the Pacific Northwest.

Based on the above we would anticipate that the inclusion of \(b_{00} \) and \(b_{11} \) as constants for all months in the analysis would tend to weaken the strength of the SOI-MCME connection. To examine this factor we recalculated the log likelihood functions assuming that the coefficients \(b_{00} \) and \(b_{11} \) successively took on 0 values during each of the 12 months of the year. If the SOI did not influence the precipitation regime for a given month (or if the optimum value for a given month is smaller than the optimum yearly value), we would expect an increase in the log likelihood function if the effect is removed by equating the appropriate monthly coefficient to zero. We performed this analysis for all stations. The changes in the log likelihood functions achieved by setting \(b_{00} \) to 0 for each month for Riverside, Flagstaff, Tucson, Walnut Gulch, and Albuquerque are shown in

Fig. 4. Change in log likelihood function due to setting \(b_{11} \) to 0 for each month.

Fig. 5. Seasonal effects: mixed exponential.

Woolhiser, 1992. The coefficients decrease from west to east. In California and New Mexico the lag \(\tau_{11} \) has considerable range. The optimum lag in Arizona is 60-90 days.

Seasonal Effects

Several investigators have concluded that the SOI effects on precipitation predominate in certain seasons [Yarnal and Diaz, 1986; Andrade and Sellers, 1988; Kiladis and Diaz, 1989; Redmond and Koch, 1991]. In parts of the desert Southwest there are two precipitation maxima, one in winter and one in summer. Summer precipitation is primarily associated with the northward transport of moist tropical air from both the Gulf of Mexico and the subtropical waters off Baja California and is highly convective in nature. Winter precipitation is associated with synoptic scale disturbances and frontal passages. The relative magnitude of these two peaks varies with elevation and longitude, with the wintertime
June and negative deviations in December and February.

Results of this seasonal analysis of the SOI impact on the mean of the mixed exponential for all stations are shown in Table 3 (four rightmost columns) and are displayed in Figure 5. It is evident that there is some spatial coherence in the strength of the SOI impact as evidenced by the increase in log likelihood but the seasonal pattern of the SOI effect has little spatial coherence. There is no clear evidence for an elevation effect either on the strength of the SOI perturbation or its seasonal pattern.

A comparison of Figures 2 and 4 reveals that for 32 station months the deviations for the Markov chain and mixed exponential are in the same direction (five positive deviations and 27 negative deviations). These summed deviations are plotted in Figure 6. The pattern of deviations suggests that the strongest SOI influence occurs in the period August to October and in February and March. The seasonal patterns exhibited by the deviations suggest that it will be fruitful to investigate methods of identifying parameters of seasonally varying coefficients \(b_{00}(t) \) and \(b_{11}(t) \).

With the perturbations induced by the SOI with the linkage given by (8), the parameters \(p_{00}(t) \) and \(\mu(t) \) become random variables. This feature is illustrated in Figure 7.

Figure 2. A positive deviation indicates that the log likelihood function is increased if the SOI effect is negated (or if the monthly coefficient is reduced), suggesting that the precipitation regime in that month is not sensitive (or is less sensitive) to the atmospheric phenomena in the Pacific Ocean related to the SOI. A large negative deviation indicates a strong relationship.

It is apparent that the SOI perturbation of \(g_{00}(t) \) leads to increases in the log likelihood function for most of the year for most of these stations. The effects in February and March are particularly strong. On the other hand, the SOI perturbation is ineffective at Riverside for the period April through July. This coincides with the dry season in southern California. The large positive deviations in July are a striking feature. This pattern may reflect that the Gulf of Mexico is the predominant source of moisture for New Mexico and eastern Arizona in July, while air masses originating in the Pacific occur with increasing frequency in August, September, and October. November exhibits a small, but consistent, negative deviation, while December and January have a preponderance of negative deviations.

Results of this seasonal analysis of the SOI impact on the Markov chain for all stations are shown in Table 2 (four rightmost columns) and are displayed in Figure 3. It is evident that there is a great deal of spatial coherence in the strength of the SOI impact as evidenced by the increase in log likelihood and also the seasonal pattern of the SOI effect. There is no clear evidence for an elevation effect either on the strength of the SOI perturbation or its seasonal pattern.

The deviations of the log likelihood function due to setting the coefficients \(b_{11} \) to 0 for each month for Riverside, Flagstaff, Tucson, Walnut Gulch, and Albuquerque are shown in Figure 4. Again, the preponderance of deviations are negative, indicating that the mean daily precipitation is related to the SOI. However, the pattern of deviations is somewhat different with negative deviations for all stations in August, September, and October. The three Arizona stations exhibit positive deviations for the period April to
where the empirical distribution functions for the probability of precipitation, \(P_1 = [1 - p_{00}(t)]/[1 - p_{00}(t) + p_{10}(t)] \) as perturbed by the historical SOI are plotted for selected dates for two stations, Riverside, California and Flagstaff, Arizona. The dates shown coincide with months in which the effect of the SOI is moderate or strong as evidenced by Figure 2. Historical values of the SOI with a 90-day lag were used to perturb \(G_{00} \), and it is clear that these perturbations lead to substantial variation in \(P_1 \). Because of the nonlinear nature of the logit transform, the absolute variations in \(P_{00}(t) \) are greater when the unperturbed value is close to 0.5 than when it is near 1.

Discussion and Conclusions

The principal objective of this study was to determine if the procedure proposed by Woolhiser [1992] could detect effects of the SOI on the daily precipitation regime in the southwestern United States. If the technique resulted in the detection of regionally consistent and physically plausible effects, it could lead to important developments in water management because it offers the possibility of performing precipitation simulations conditioned on past records of SOI. Such simulations, conditioned on the past 90 day records of the SOI, could be carried out for 90 days in the future or possibly longer if the SOI can be predicted [Chu and Katz, 1985]. Wilks [1989] presented an approach whereby the 30-day precipitation forecasts of the Climate Analysis Center of the NOAA can be used for conditional precipitation simulations. It might be fruitful to investigate a combination of Wilks [1989] approach and the techniques outlined in this paper.

On the basis of our analyses we conclude that the technique which uses the SOI to perturb parameters of a stochastic daily precipitation model is effective and has several advantages over previously used methods. It explicitly identifies SOI effects on the frequency of precipitation and on the amounts of precipitation given occurrence. It has a much higher time resolution than previously used methods which typically use seasonal or annual data. This feature allows a more detailed investigation of seasonal effects and may help in relating physical processes to statistically determined SOI—precipitation linkages. Because single stations are used, it is possible to investigate the effect of elevation on these associations. Simulated precipitation sequences with model parameters perturbed by the SOI exhibit greater monthly and annual variances than those simulated with purely periodic parameters. However, it appears that these variances are still underestimated. Additional perturbing factors such as deviations of previous 30-day precipitation from the mean [Wilks, 1989] or possible deterministic cycles [Currie and O’Brien, 1990] should be investigated.

The effects of the SOI on precipitation are consistent with analyses made by previous investigators but provide higher temporal and spatial resolution. Also, this method does not rely on somewhat arbitrary schemes to classify years as “ENSO” or “NON-ENSO.”

Appendix: Parameter Estimation for Markov Chain Model

The approach used to estimate the Fourier coefficients describing the seasonal variation of the parameters of the first-order Markov chain is identical to that used by Zucchini and Adamson [1984] and is closely related to the method used by Stern and Coe [1984]. Consider \(M \) years of observations of precipitation on days \(t \) and \(t - 1 \). The probability mass function of the number of dry days on day \(t \) given that day \(t - 1 \) was dry can be described by the binomial distribution. Therefore the likelihood function for the dry-dry transition probabilities can be written

\[
L_{00} = \prod_{t=1}^{365} \left(\frac{N_{D}(t-1)}{N_{DD}(t)} \right) p_{00}(t)^{N_{00}(t)} \left[1 - p_{00}(t) \right]^{N_{00}(t)-1} - N_{00}(t)
\]

where \(N_{D}(t-1) \) is the number of dry days on day \(t - 1 \) in \(M \) years, \(N_{DD}(t) \) is the number of dry-dry transitions from day \(t - 1 \) to day \(t \), and \(p_{00}(t) \) is the probability of a dry-dry transition from day \(t - 1 \) to day \(t \). The log likelihood function can be written as

\[
\log L_{00} = \prod_{t=1}^{365} \left[\log \left(\frac{N_{D}(t-1)}{N_{DD}(t)} \right) + N_{DD}(t) \log p_{00}(t) \right]
\]

\[
+ \{ N_{D}(t-1) - N_{DD}(t) \} \log \{ 1 - p_{00}(t) \}
\]

Now \(p_{00}(t) \) is given by the inverse logit transform, (7), and the logit \(G_{00}(t) \) is expressed as a Fourier series with parameters, \(a_i, i = 1, 2, \ldots, m_{n} \), where \(m_{n} \) is an odd number.

\[
G_{00}(t) = \sum_{i=1}^{m_{n}} a_i \phi_i(t)
\]

where

\[
\phi_i(t) = \cos \left(i - 1 \right) \frac{2 \pi i}{365} \quad i = 1, 3, 5, \ldots
\]

\[
\phi_i(t) = \sin \left(2 i \pi i / 365 \right) \quad i = 2, 4, \ldots
\]

To maximize the log likelihood, we must have

\[
\frac{\partial \log L_{00}}{\partial a_i} = 0 \quad i = 1, 2, \ldots, m_{n}
\]

It can be readily shown that these equations are given by

\[
\sum_{t=1}^{365} \left[N_{DP}(t) - N_{D}(t-1) \right] \left\{ \frac{\exp \left[G_{00}(t) \right]}{1 + \exp \left[G_{00}(t) \right]} \right\} \frac{\partial G_{00}(t)}{\partial a_i} = 0
\]

\[
i = 1, 2, \ldots, m_{n}
\]

Because these equations are nonlinear they must be solved by an iterative procedure. The expressions for the second derivatives of the log likelihood function with respect to the Fourier coefficients \(a_i \) are

\[
\frac{\partial^2 \log L_{00}}{\partial a_i \partial a_j} = - \sum_{t=1}^{365} \frac{N_{D}(t-1) \exp \left(G_{00}(t) \right) \partial G_{00}(t) \partial G_{00}(t)}{\left[1 + \exp \left(G_{00}(t) \right) \right]^2} \frac{\partial a_i}{\partial a_j}
\]

Note that \(\partial G_{00}(t)/\partial a_i = \phi_i(t)\).
The Newton-Raphson procedure has proven to be effective in solving the simultaneous equations. Starting values for the coefficients are obtained by least squares fitting of Fourier series to logits calculated from estimates of p_{90} for 26 periods of 14 days each (15 days in the last period). We have used five harmonics (11 parameters) to describe $G_{90}(t)$. Missing data on either day t or $t - 1$ were ignored in determining $N_p(t - 1)$ and $N_{p0}(t)$.

Acknowledgments. We thank Richard Katz for helpful suggestions and Shams Vazirinejad for his assistance in programming.

References

K. T. Redmond, Western Regional Climate Center, P.O. Box 60220, Reno, NV 89506.

(Received April 30, 1992; revised October 14, 1992; accepted October 22, 1992.)