Human Enteric Pathogen Internalization by Root Uptake into Food Crops

Kirsten A. Hirneisen,1 Manan Sharma,2 and Kalmia E. Kniel1

Abstract
With an increasing number of outbreaks and illnesses associated with produce contaminated before harvest, understanding the potential and mechanisms of produce contamination by enteric pathogens can aid in the development of preventative and post-harvest processing measures to reduce microbial populations. Enteric pathogens localized at subsurface sites on leafy green plant tissue prevent their removal during washing and inactivation by sanitizers. Root uptake of enteric pathogens and subsequent internalization has been a large area of research with results varying due to differences in experimental design, systems tested, and pathogens and crops used. The potential for uptake of foodborne pathogen, both bacterial and viral, through roots into food crops is reviewed. Various factors shown to affect the ability of human pathogens to internalize include growth substrate (soil vs. hydroponic solution), plant developmental stage, pathogen genus and/or strain, inoculum level, and plant species and cultivar. Several mechanisms of internalization ("active" vs. "passive") of bacteria to plant roots have also been hypothesized.

Introduction
Outbreaks of foodborne illnesses have been increasingly linked to the consumption of fruits and vegetables. For a number of these produce-related outbreaks, the origin of contamination has been traced back to the farm; however, in many outbreaks, definitive identification of the mode of produce contamination remains unknown. Produce can become contaminated with viral or bacterial pathogens in the field through soil, feces, or water used for irrigation, through application of manure, biosolids, pesticides, and fertilizers, and through dust, insects, and animals, or during postharvest (harvesting equipment, transport containers, animals, insects, and dust) and by food handlers in food service establishments (Beuchat, 2002). Data from the Center for Science in the Public Interest database revealed that produce outbreaks accounted for 13% of foodborne outbreaks during 1990–2005 (deWaal and Bhuiya, 2007). The 2006 outbreak linked to Escherichia coli O157:H7–contaminated spinach that resulted in 205 confirmed cases and three deaths served as a catalyst for research efforts to ensure the safety of leafy greens (CDC, 2006). The response to these incidents has led to the adoption of new recommendations intended to improve produce safety (Commodity Specific Food Safety Guidelines for the Production and Harvest of Lettuce and Leafy Greens, 2010).

From these events emerged research efforts aimed to answer the question of pathogen internalization through root uptake of plants. Internalization as used in this review is defined as the uptake of human enteric pathogens through the roots into the intercellular spaces between plant cells and in the plant vasculature tissues, xylem and phloem. Understanding pathogen interactions with different produce commodities in the growing environment is useful to minimize risk of contamination, develop processes for pathogen reduction in pre- and post-harvest environments, and to prioritize research initiatives to investigate these issues that most greatly impact produce safety. The ability of plants to internalize foodborne pathogens, including both bacteria and viruses, through intact roots during growth is a topic that has received much debate over the last few years (Solomon and Sharma, 2009) and therefore will be a focus of this review.

Internalization into Crops by Pathogenic Bacteria
Many studies have assessed the ability of crops to internalize human bacterial pathogens through root uptake. These studies have employed different experimental approaches that may account for the large variation in results (Tables 1 and 2).

Effect of plant growth substrate
In internalization studies conducted with bacterial pathogens and produce crops, two types of growth substrate, soil and hydroponic solution, were used. Bacterial internalization

1Department of Animal and Food Sciences, University of Delaware, Newark, Delaware.
2Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Beltsville, Maryland.
<table>
<thead>
<tr>
<th>Plant</th>
<th>Pathogen</th>
<th>Growth medium</th>
<th>Inoculation method</th>
<th>Plant age</th>
<th>Results: internalization</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leafy greens (spinach,</td>
<td>Escherichia coli O157:H7 (six</td>
<td>Soil</td>
<td>Drip irrigation or compost (2, 4, or 6 log CFU/mL)</td>
<td>Transplanted to field 8 weeks, inoculated 1, 8, and 10 weeks after transplantation</td>
<td>No internalization was detected in any leaf tissues; detection in root occurred at one sampling time.</td>
<td>Erikson et al., 2010</td>
</tr>
<tr>
<td>lettuce, parsley)</td>
<td>negative)</td>
<td></td>
<td></td>
<td></td>
<td>Heat and drought stress applied individually or in combination did not promote internalization.</td>
<td>Zhang et al., 2009a</td>
</tr>
<tr>
<td>Lettuce (romaine and</td>
<td>E. coli O157:H7</td>
<td>Soil</td>
<td>8^8 and 10^6 CFU/g</td>
<td>Seedlings with 4–5 leaves were transplanted and inoculated 30 days after transplanting</td>
<td>All samples were negative for bacterial at all inoculums, routes of inoculation, and times post-inoculation.</td>
<td>Zhang et al., 2008b</td>
</tr>
<tr>
<td>Iceberg lettuce, leaf)</td>
<td></td>
<td></td>
<td></td>
<td>Inoculated when 3–4 leaves present, analyzed on days 26 and 60 post-inoculation</td>
<td>No Salmonella was present in the aerial parts of the plant tissues.</td>
<td>Bernstein et al., 2007</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Salmonella Newport</td>
<td>Soil</td>
<td>Inoculated 3 and 6 log CFU/mL</td>
<td>Inoculated 20 days; analysis on days 2 and 7 post-inoculation</td>
<td>No E. coli O157:H7 in surface sterilized roots; Salmonella Typhimurium detected in surface sterilized root but not shoots</td>
<td>Franz et al., 2007</td>
</tr>
<tr>
<td>Lettuce</td>
<td>E. coli O157:H7, Salmonella</td>
<td>Hydroponic solution</td>
<td>7 log CFU/mL</td>
<td>8-day seedlings inoculated, harvested after 38 days</td>
<td>E. coli O157:H7 showed the highest internalization prevalence; plants with internal contamination weighed less than plants without internalized pathogens.</td>
<td>Zhang et al., 2009b</td>
</tr>
<tr>
<td></td>
<td>Typhimurium</td>
<td></td>
<td></td>
<td></td>
<td>No internalization</td>
<td>Bernstein et al., 2007</td>
</tr>
<tr>
<td>Lettuce (iceberg)</td>
<td>E. coli O157:H7</td>
<td>Soil</td>
<td>8^6 and 10^8 CFU/g</td>
<td>Inoculated 14 and 18 days, plants harvested on 38 days</td>
<td>No internalization</td>
<td>Johannessen et al., 2005</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Fluorescent microspheres,</td>
<td>Soil</td>
<td>Inoculated manure (10^6 CFU/g) added to soil 30^6</td>
<td>Inoculated 3-week-old seedlings, analyzed</td>
<td>No internalization into leaf observed by direct plating and qPCR; bacterial presence on roots observed by confocal laser microscopy on days 7 and 14</td>
<td>Solomon and Matthews, 2005</td>
</tr>
<tr>
<td></td>
<td>E. coli O157:H7</td>
<td></td>
<td>particles or CFU</td>
<td>Mature lettuce plants were inoculated and harvested 1, 3, and 5 days post-inoculation</td>
<td>E. coli O157:H7 was visualized at depths of up to 45 μm below the tissue surface; edible portions can become contaminated through transport by the root system.</td>
<td>Solomon and Matthews, 2002</td>
</tr>
<tr>
<td>Lettuce (green ice)</td>
<td>E. coli O157:H7</td>
<td>Manure amended soil</td>
<td>Inoculated manure with 8, 6, and 4 log CFU/g and added to lettuce flats</td>
<td>Days 3, 6, and 9 post-planting seedlings were cut 1 cm above the soil surface</td>
<td>No internalization into leaf observed by direct plating and qPCR; bacterial presence on roots observed by confocal laser microscopy on days 7 and 14</td>
<td>Solomon and Matthews, 2002</td>
</tr>
<tr>
<td>Spinach</td>
<td>E. coli O157:H7</td>
<td>Soil (drench)</td>
<td>6 log CFU/mL</td>
<td>Inoculated at 4-leaf stage, analysis on days 0, 7, and 14</td>
<td>Microscopic analysis showed E. coli cells in root hairs after 7 days in soils with high population; no cells observed on day 21 or 36</td>
<td>Shama et al., 2009</td>
</tr>
<tr>
<td>Spinach</td>
<td>E. coli O157:H7</td>
<td>Hydroponic solution</td>
<td>Low (5 logs) or high (8.5 logs)</td>
<td>Plants (12-day) inoculated, allowed to grow for 21 days</td>
<td>E. coli O157:H7 was recovered from shoot tissue from 3 replicates on days 18 and 21</td>
<td>Shama et al., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pasteurized soil</td>
<td>Plants (7-day) transferred to inoculated pasteurized soil (325g)</td>
<td>Microscopic analysis showed E. coli cells in root hairs after 7 days in soils with high population; no cells observed on day 21 or 36</td>
<td>Shama et al., 2009</td>
</tr>
<tr>
<td>Spinach</td>
<td>E. coli P56</td>
<td>Hydroponic solution</td>
<td>10^9 CFU/mL, 10^3–10^6 CFU/mL</td>
<td>Inoculated seeds and cultivated for 35 days; inoculated 13 days in hydroponic system</td>
<td>Seed inoculum: E. coli presence on root exterior (7 log) and interior (4 log)</td>
<td>Warriner et al., 2003a</td>
</tr>
<tr>
<td>Spinach</td>
<td>E. coli O157:H7 Ph1</td>
<td>Soil microcosms</td>
<td>10^6 CFU/mL</td>
<td>Spinach roots were damaged either by mechanical (tissue) or biological (F. spiget DC3000) disruption.</td>
<td>Seed inoculum: E. coli presence on root exterior (7 log) and interior (4 log)</td>
<td>Hora et al., 2005</td>
</tr>
<tr>
<td>Cabbage</td>
<td>E. coli</td>
<td>Sewage spill into the water source used for irrigation</td>
<td>17 million gallons of unchlorinated filtered sewage was released into a creek used for irrigation</td>
<td>A field containing 15 acres of cabbage was irrigated on the day the contaminated water flowed past the field; cabbage samples collected 7 days post-irrigation</td>
<td>Undamaged plants: E. coli internalized into roots, but not leaves</td>
<td>Wachtel et al., 2002b</td>
</tr>
<tr>
<td>Cress, radish, spinach,</td>
<td>E. coli O157:H7, Salmonella</td>
<td>Hydroponic solution</td>
<td>Seeds were soaked in bacterial cell suspension (2 log CFU/mL)</td>
<td>Plants surface sterilized, seedlings analyzed on day 9</td>
<td>"3/4 plots had E. coli roots positive" Unable to isolate E. coli from leaves corresponding to the positive root samples or stagnant water samples Six different serotypes of nonpathogenic E. coli associated with the cabbage roots Salmonella Typhimurium internalized only into radish and lettuce seedlings</td>
<td>Jabolson et al., 2005</td>
</tr>
<tr>
<td></td>
<td>Typhimurium, Cronobacter sakazakii</td>
<td></td>
<td></td>
<td></td>
<td>Listeria monocytogenes was not recovered from surface-sterilized samples</td>
<td>Jabolson et al., 2005</td>
</tr>
<tr>
<td></td>
<td>Listeria monocytogenes</td>
<td></td>
<td></td>
<td></td>
<td>7% of all 12-day-old surface-sterilized plants were positive; 15% of 30-day-old surface-sterilized plants were positive at 15 days post-inoculation</td>
<td>Moottun et al., 2009</td>
</tr>
</tbody>
</table>

CFU, colony-forming units.
<table>
<thead>
<tr>
<th>Plant</th>
<th>Pathogen</th>
<th>Growth medium</th>
<th>Inoculation method</th>
<th>Plant age</th>
<th>Results: internalization</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato</td>
<td>Salmonella Montevideo</td>
<td>Pine bark</td>
<td>Irrigation water (350mL of 10^7 CFU/mL) every 14 days and seed stock (10^7 CFU/mL)</td>
<td>Analyzed on day 70</td>
<td>No Salmonella was detected in stem scar, fruit pulp, leaves, or stems; a few root samples were positive.</td>
<td>Miles et al., 2009</td>
</tr>
<tr>
<td>Tomato</td>
<td>Salmonella (Montevideo, Michigan, Poona, Hartford, Enteridis)</td>
<td>Hydroponic (Hoagland's solution)</td>
<td>Hydroponic solution inoculated with 4.5 log CFU/mL</td>
<td>Inoculated on day 7, analyzed on day 16</td>
<td>Detected in hypocotyls and cotyledons; Salmonella Montevideo and Salmonella Michigan were dominant serovars</td>
<td>Guo et al., 2002</td>
</tr>
<tr>
<td>Maize</td>
<td>Escherichia coli</td>
<td>Hydroponic solution</td>
<td>7 log CFU/mL</td>
<td>Inoculated on day 15</td>
<td>Positive internalization, more E. coli present in plants with decapitated roots, no internalization into soil grown maize</td>
<td>Bernstein et al., 2007b</td>
</tr>
<tr>
<td>Barley</td>
<td>Salmonella Typhimurium, Listeria (L. monocytogenes, L. ivanovii, and L. innocua)</td>
<td>Hydroponic solution</td>
<td>8 log CFU</td>
<td>Grown for 2 weeks, roots and shoots harvested and analyzed by enumeration, FISH, and PCR</td>
<td>Salmonella was internalized in roots (5-6 log CFU/g) and in shoots after 4 weeks; no endophytic colonization could be detected for Listeria species</td>
<td>Kutter et al., 2006</td>
</tr>
<tr>
<td>Alfalfa seeds, Medicago truncatula</td>
<td>Salmonella Cubana, Infantis, Typhimurium</td>
<td>Hydroponic solution</td>
<td>7, 6, 5, 4, 3, 2, 1, 0 CFU/seedlings</td>
<td>Plants harvested 5 and 7 days after inoculation</td>
<td>Salmonella Cubana had similar colonization behavior as Klebsiella, but only at the 4 highest inoculations</td>
<td>Dong et al., 2003</td>
</tr>
<tr>
<td>Alfa seeds, Escherichia coli K12 and E. coli O157:H7</td>
<td>Klebsiella pneumonia</td>
<td>Hydroponic solution</td>
<td>7, 6, 5, 4, 3, 2, 1, 0 CFU/seedlings</td>
<td>Plants harvested 5 and 7 days after inoculation</td>
<td>Salmonella Cubana had similar colonization behavior as Klebsiella, but only at the 4 highest inoculations</td>
<td>Dong et al., 2003</td>
</tr>
<tr>
<td>Green ice leaf lettuce</td>
<td>E. coli O157:H7</td>
<td>Soil</td>
<td>Manure-amended soil or irrigation water (1, 2, 3, 4 log CFU/g)</td>
<td>Young plants (12-day) and old plants (30-day) analyzed at 1, 10, 20, and 30 days post-exposure</td>
<td>7% of all 12-day-old surface-sterilized plants were positive; 11% of 30-day-old surface-sterilized plants were positive at 15 days post-inoculation.</td>
<td>Mootian et al., 2009</td>
</tr>
<tr>
<td>Arabidopsis thaliana</td>
<td>Salmonella Newport</td>
<td>Hydroponic solution, soil, and autoclaved soil</td>
<td>Pipetted bacterial suspension directly on roots or suspended seeds in bacterial suspension</td>
<td>6-7 days post-germination and seeds</td>
<td>GFP-labeled bacteria were observed within the root, but not in the vasculature.</td>
<td>Cooley et al., 2003</td>
</tr>
<tr>
<td>Peanut</td>
<td>Salmonella Typhimurium, GFP</td>
<td>Hydroponic solution</td>
<td>Seed soaked in 10^7 CFU/mL</td>
<td>Seedlings were analyzed, fixed for immunohistochemistry</td>
<td>Salmonella was detected in every major tissues (cortical, vascular, epidermal, and pith).</td>
<td>Deering et al., 2012</td>
</tr>
</tbody>
</table>

CFU, colony-forming units; GFP, green fluorescent protein; FISH, fluorescent in situ hybridization; PCR, polymerase chain reaction.
into plant tissues through the roots was generally observed in studies where plants were grown in inoculated hydroponic solution (Bernstein et al., 2007b; Dong et al., 2003; Franz et al., 2007; Guo et al., 2002; Jablasone et al., 2005; Kutter et al., 2006; Sharma et al., 2009; Warriner et al., 2003a) as opposed to inoculated soil, in which little or no internalization was observed (Bernstein et al., 2007a,b; Erikson et al., 2010; Johannessen et al., 2005; Miles et al., 2009; Mitra et al., 2009; Sharma et al., 2009; Zhang et al., 2009a,b). Some investigators have suggested that the motility of *E. coli* O157:H7 in hydroponic solution may provide more opportunity for uptake and internalization into leafy green plants than in soil (Sharma et al., 2009). However, exceptions to this trend have been noted (Franz et al., 2007; Mootian et al., 2009; Solomon et al., 2002). For example, Solomon and Matthews (2005) microscopically observed *E. coli* O157:H7 below the tissue surface in edible portions of the green ice lettuce when grown in manure-amended soil inoculated with *E. coli* O157:H7. A portion (7%) of green ice leaf lettuce plants was positive for *E. coli* O157:H7 when grown in contaminated soil (Mootian et al., 2009). Franz et al. (2007) proposed that the difference in internalized bacterial populations from plants grown in contaminated soil versus hydroponic solution was due to root damage sustained from growth in soil which allowed for greater internalization of *E. coli* O157:H7 into the roots.

Sterilized or pasteurized soil has also been used to assess the potential of bacterial internalization into crops. Cooley et al. (2003) compared autoclaved and non-autoclaved soil on *Salmonella* Newport and *E. coli* O157:H7 survival and internalization in *Arabidopsis thaliana*. These authors believed that the endogenous bacteria and *Enterobacter absuriae* present in soil colonized root tissue surfaces more efficiently than *Salmonella* Newport or *E. coli* O157:H7, resulting in the suppression of growth of these pathogens. The effect of the soil matrix on bacterial internalization and survival was also investigated by Sharma et al. (2009). *E. coli* O157:H7 was unable to translocate into root or shoot vascular tissue of spinach plants when inoculated into pasteurized soils (Sharma et al., 2009). The reduction of Gram-negative microorganisms present in soil through pasteurization did not enhance the ability of *E. coli* O157:H7 or non-pathogenic *E. coli* to internalize to spinach tissues. The authors also observed that soil placed stress on *E. coli* populations, as low initial populations of approximately 3.2–4 log CFU/mL in the hydroponic solution grew by 1–2 log CFU/mL between days 0 and 7; however, in pasteurized soils, low populations (3.9–4.4 log CFU/g) of *E. coli* declined to less than 1 log CFU/g by day 21. High populations of *E. coli* (7.6–8.0 log CFU/g) declined to 2.6–4.5 log CFU/g soil by day 28, indicating the physiological stress placed on *E. coli* cells in soil. It was hypothesized that the stress placed on *E. coli* O157:H7 cells in soils, along with their limited motility in soil, may have prevented the ability of these cells to internalize into spinach root tissues. Total carbon levels have also been shown to affect the survival of *E. coli* O157:H7 in soils as well, imparting various levels of physiological stress and potentially affecting the organism’s ability to internalize to root tissues (Vidovic et al., 2007).

Effect of environmental stress

Several internalization studies focused on the effects of extreme environmental conditions and plant damage on root uptake of pathogenic bacteria in food crops. Zhang et al. (2009a) tested if high temperatures and drought conditions during growth of romaine and iceberg lettuce affected the root uptake of *E. coli* O157:H7. Romaine and iceberg lettuce plants grown in inoculated soil were heat stressed under two conditions: either 2 days of 36°C during the day (12h) and 15°C at night (12h), or 3 days of 32°C during the day (12h) and 15°C at night (12h). Two watering conditions were also tested: a moist treatment in which lettuce was watered daily during the heat treatment and a drought treatment whereby lettuce was not watered during the heat treatments. Analysis of plant and soil samples suggested that heat and drought stress did not impact the susceptibility of plants to be contaminated through uptake by *E. coli* O157:H7. *E. coli* O157:H7 survived for longer durations in moist (unstressed) soils compared to heat-stressed soils.

The wounding of the root tips from soil may also place stress on plants and affect bacterial uptake through roots. Wounding has the potential to expose vascular tissue to pathogenic bacteria. After root decapitation, internalization of *Salmonella* Newport in lettuce leaves occurred more in plants with damaged roots (Bernstein et al., 2007a). When root decapitation was performed on maize grown in *E. coli* O157:H7-contaminated hydroponic solution, internalization of the bacteria occurred (Bernstein et al., 2007b). Other investigators have postulated that root damage to lettuce plants was one potential factor where larger numbers of *E. coli* O157:H7 cells were internalized in leaves when plants were grown in soil (more root damage) than in hydroponic media (less root damage) (Franz et al., 2007). Although root damage can potentially increase the likelihood of internalization of *E. coli* in maize and lettuce, several studies examining spinach plants minimize the role that mechanical damage of roots can have on the frequency of internalized cells. In spinach plants, mechanical damage of root tissues did not increase the likelihood of internalization through uptake (Hora et al., 2005). In spinach grown in hydroponic media, Sharma et al. (2009) observed higher levels of internalization of *E. coli* O157:H7 in roots of spinach plants grown hydroponically than in those grown in soil. In these experiments, no internalized cells were recovered from leaf tissues. Root tissue is more likely to be less damaged when plants are grown in hydroponic growth substrate than in soil; the authors hypothesize that increased motility of *E. coli* O157:H7 cells may have led to a more intimate attachment to root tissue, permitting more frequent internalization of *E. coli* O157:H7 in spinach plants grown hydroponically compared to those grown in soil. The results of these studies indicate that root damage does not universally promote the increased frequency of uptake and internalization of pathogenic bacterial cells; uptake and internalization of enteric bacterial pathogens cannot be generalized, and there are likely specific pathogen–plant interactions.

Effect of pathogen strain and serovar

Similar to the effect of the growth substrate, pathogen strain or serovar was shown to play a large role in internalization of the pathogen. Internalization was shown to be dependent on *Salmonella* serovar in one study. Guo et al. (2002) inoculated hydroponic growth substrate with a five-serovar *Salmonella* cocktail (Motevideo, Michigan, Poona, Hartford,
and Enteriditis); *Salmonella* was detected in the hypocotyls, cotyledons, stems, and leaves of tomato plants. Polymerase chain reaction (PCR) analysis of recovered *Salmonella* from tomato plant tissues revealed that serotypes Montevideo and Michigan were most prevalent and that Enteriditis, Hartford, and Poona were not detected in any tomato tissue samples (Guo et al., 2002). Similarly, *Salmonella* serovars Cubana, Infantis, and Typhimurium showed different abilities to internalize and colonize alfalfa sprouts when seeds were inoculated under the same environmental conditions (Dong et al., 2003). In this study, only *Salmonella* Cubana was able to match the level of colonization of the plant pathogen *Klebsiella pneumoniae* to the interior of alfalfa roots and hypocotyls (Dong et al., 2003).

$Listeria$ spp. were not able to internalize plant tissues (Jablonske et al., 2005; Kutter et al., 2006). Jablonske et al. (2005) compared the internalization of *L. monocytogenes* to *Salmonella* Typhimurium on inoculated seeds of cress, radish, spinach, lettuce, mustard, carrots, and tomatoes. Under the same experimental conditions, *Salmonella* Typhimurium internalized into the roots, whereas *L. monocytogenes* did not. In another study, *L. monocytogenes*, *L. ivanovii*, and *L. innocua* were not found to be associated with the internal portions of barley sprouts by fluorescent in situ hybridization, whereas *Salmonella* Typhimurium was (Kutter et al., 2006). Both *Salmonella* and *Listeria* were detected on the external root surfaces (main roots, side roots, and root hairs).

When species were compared, *E. coli* O157:H7 showed the highest probability of internalization and contamination compared to *Salmonella* Typhimurium for both surface sterilized and non-surface sterilized shoots in soil grown lettuce plants (Franz et al., 2007). Conversely, Dong et al. (2003) found that when comparing *Salmonella* serovars, *E. coli* O157:H7 and *E. coli* K12 to the plant pathogen *Klebsiella pneumoniae*, S. Cubana had the highest internalized populations of the human pathogens. In this same study by Dong et al. (2003), when comparing *E. coli* O157:H7 to *E. coli* K12, *E. coli* O157:H7 colonized the interior of sprouts in higher numbers compared to *E. coli* K12.

Effect of inoculum level

Internalization studies varied greatly with regard to the population of bacteria inoculated into the growing substrate. It would be expected that higher inoculum levels would result in higher levels of internalization; however, experimental results do not fully support this hypothesis. For example, inoculation of tomatoes with irrigation water contaminated with *S. Montevideo* at a population of 7 log CFU/mL every 14 d for 70 days resulted in no detected internalization in the stem scar, fruit pulp, or leaves or stems of the plant. In this study five of 24 roots samples were positive for *S. Montevideo* (Miles et al., 2009). A possible explanation for the lack of internalization into the edible portions of the tomato plant despite extremely high levels of contamination could be due to the use of non-hydroponic rice bark growth substrate, potentially decreasing the potential for pathogen root uptake. The use of pine bark may not have provided an opportunity for bacterial cells to form intimate attachments to root tissue (as hydroponic growth substrates do), minimizing opportunities for internalization through root uptake. The use of pine bark as a growth substrate may have physiologically stressed bacterial cells (not providing available nutrients for bacterial growth), again negatively affecting their ability to internalize to root tissue. Similar results were also observed by Sharma et al. (2009) whereby limited internalization (only detectable by enrichment) in spinach plants was observed despite continuous exposure to high populations (approximately 7 log CFU/mL) of *E. coli* O157:H7 in inoculated pasteurized soil. The physiological stress of soil on the inoculated *E. coli* and conditions limiting bacterial motility may have affected the internalization potential. In hydroponic solution, internalized populations (up to 4 log CFU) were detected after 14 days without enrichment. However, it was also observed that high levels of inoculation (8-9 log CFU) resulted in bacteria internalized into plant tissues (Solomon and Matthews, 2005; Solomon et al., 2002).

Several investigators reported that higher bacterial inocula lead to more uptake and internalization, and lower inocula results in little to no internalization. Mootian et al. (2009) inoculated *E. coli* O157:H7 at low levels (1, 2, 3 and 4 log CFU/g) in manure amended soil and irrigation water to determine whether exposure of lettuce plants to these low populations would result in detectable levels of the pathogen. Detection of internalized *E. coli* O157:H7 only occurred after sample enrichment, indicating that the level of contamination of lettuce tissues was extremely low; lettuce plants exposed to 10^1 CFU/g of *E. coli* O157:H7 were detected as positive (Mootian et al., 2009). In a study evaluating the effect of *Salmonella* inoculum level and motility on the potential for uptake and internalization in *Arabidopsis thaliana* plants, low inoculum levels (10^4 CFU/mL) of *Salmonella* Typhimurium strains defective in flagellin synthesis or motility functions were able to colonize the root surface but did not invade the lateral root junctions (Cooley et al., 2003). When the inoculum level was increased to 10^6 CFU/mL, these flagellin-deficient *Salmonella* strains were able to internalize into the root. Cooley et al. (2003) suggested that as the inoculum level of the bacteria increases, the probability increases that the bacteria are translocated to more sites on root tissue and more likely to be internalized.

Effect of plant type, age, and exposure time

In bacterial internalization studies, the many inherent variables and those under study make it difficult to assess specifically the role of plant type. Jablonske et al. (2005) inoculated seeds of cress, radish, spinach, lettuce, mustard, carrots, and tomatoes with *E. coli* O157:H7 and *Salmonella* Typhimurium. *E. coli* O157:H7 was found to internalize into all plant types, whereas *Salmonella* Typhimurium was internalized into radish and lettuce seedlings. The authors suggested that the antimicrobial constituents of root vegetables may be responsible for limited bacterial growth and internalization of human pathogenic bacteria.

Differences in the developmental stages of plant root systems as they mature may influence the ability of enteric microbes to interact with, enter plant roots and travel to the leaf tissue (Mootian et al., 2009). Both plant age at the inoculation/exposure event and extent of time of exposure play a role in possible internalization of the bacterial pathogen. Leaf age has been shown to influence the growth and survival of both *Salmonella* and *E. coli* O157:H7 communities with young lettuce leaves being associated with a greater risk of contamination (Brandl and Amundson, 2008). Jablonske...
et al. (2005) soaked seeds in a bacterial suspension of *E. coli* O157:H7 and *Salmonella* Typhimurium and recovered bacteria from internal tissues nine days after growth. When seeds were inoculated with *E. coli* P36 and young spinach plants were harvested for analysis 35 days later, approximately 4 log of *E. coli* was detected in the interior of roots (Warriner et al., 2003a). However, in this study when 13-day-old seedlings were transferred to a hydroponic system inoculated with *E. coli* P36, colonization of spinach was limited to the exterior of the roots. Warriner et al. (2003a) reasoned that bacterial growth on the seeds was likely sustained by the exudates released during germination, enabling *E. coli* to colonize both the exterior and the interior of the seedling. Another study indicated that internalized *E. coli* O157:H7 bacterial cells were observed by epifluorescent microscopy in surface-sterilized root tissue of younger spinach plants, seven days after inoculation, compared to older spinach plants 14 days after inoculation (Sharma et al., 2009). Contrary to these studies, other investigators have shown older plants to uptake human enteric bacteria more than younger plants. Bernstein et al. (2007a) compared the ability of *Salmonella* Newport to contaminate the above-ground tissues of 17- and 33-day-old lettuce plants. In this study, both 17- and 33-day-old lettuce plants were inoculated with *Salmonella* and analyzed for internalization two and seven days post-inoculation. No contamination was found in the 17-day old plants, but *Salmonella* was recovered from internal tissues of the 33-day-old plants, two days after inoculation. *Salmonella* Newport was also not able to internalize into 20-day old plants, and Bernstein et al., (2007a) suggested that plant age affected bacterial entry through plant roots. Similarly, Mootian et al. (2009) observed a greater percentage of 30-day-old green ice leaf lettuce plants (11%) containing internalized *E. coli* O157:H7 compared to 7% of 12-day-old plants with internalized *E. coli* O157:H7.

Another factor affecting the detection of internalized pathogenic bacteria in crops is the ability for bacterial cell survival in the soil or in aerial tissues of the plant over a period of time. Mootian et al. (2009) concluded this was likely the case where at the end of the cultivation period (42 days), only two of the 42 non-surface sterilized maize samples tested positive by enrichment for *E. coli* O157:H7 and no bacteria were recovered from surface sterilized leaf tissue. In a study where soil was inoculated by water contaminated with *E. coli* O157:H7, bacteria were visible by confocal microscopy on the rhizosphere of one spinach plant on day seven; by day 14, *E. coli* O157:H7 was visible on the root surface of 4 out of 9 plants (Mitra et al., 2009). While, there is a greater association of the bacteria with the spinach roots in the older plants, these results do not show uptake of the bacteria into the plant tissue.

Localization of bacteria within plant tissues

The location of internalized bacterial pathogens is of interest to determine if the bacteria are able to internalize not only into the root tissues, but also into the edible portions of the plant. The presence of bacterial human pathogens in the aerial parts of plants is dependent upon several processes including root internalization, short and long distance transport in the plant and survival or multiplication within the plant tissue (Bernstein et al., 2007b). In some studies, bacteria were found to be present in surface-sterilized roots but not detected in the leaves, indicating that bacteria were able to penetrate the root tissue of plants grown in soil or hydroponic systems, but could not translocate to edible portions of the plants (Bernstein et al., 2007a; Franz et al., 2007; Mitra et al., 2009; Sharma et al., 2009; Wachtel et al., 2002a; Warriner et al., 2003a). Other studies have observed the presence of bacterial pathogens internalized into edible leaf portions (Solomon and Matthews, 2005; Solomon et al, 2002). Cooley et al. (2003) inoculated a hydroponic solution with green fluorescent protein (GFP)–labeled *Salmonella* Newport and *E. coli* O157:H7 and observed the interaction of these pathogens with *Arabidopsis thaliana* sprouts microscopically. Inoculated bacteria on the roots were concentrated initially at the root tips and the branch point, possibly due to the availability of nutrients at those locations. Inoculated bacteria were rarely able to penetrate into the vasculature, and bacteria were not observed to be moving systemically within the plant (Cooley et al., 2003).

Mechanism of internalization

Controversy exists as to whether bacterial internalization via root uptake is a passive or active event by either the plant or pathogen. Several studies have shown pathogen specific interactions with crops. Additionally, cell surface moieties affect internalization, as *Salmonella* Typhimurium strains defective in flagellin synthesis or motility functions were able to grow on the surface of the root, but were unable to invade the root (Cooley et al., 2003). The authors predicted that the bacteria used their flagella to position themselves near the developing lateral root, increasing their potential for internalization. This suggests that internalization into plant routes is an active process dependent upon the plant and pathogen. On the other hand, Solomon and Matthews (2005) determined that bacterial factors (surface moieties, appendages, and adaptive responses) were not necessary for root uptake, as both microspheres and bacterial cells were able to internalize into the root and leaves of lettuce. Lettuce plants were inoculated with fluorescent microspheres and *E. coli* O157:H7 for comparison, because they are similar in size (1 µm in diameter). Solomon and Matthews (2005) concluded that *E. coli* O157:H7 entry into plant tissues was mediated by the plant rather than by specific bacterial factors and supports the passive mechanism of internalization.

Inoculation of *Arabidopsis thaliana* with GFP-labeled *S. enterica* and *E. coli* O157:H7 showed invasion of the roots at the lateral root junctions (Cooley et al., 2003). These GFP-labeled bacteria were found within the primary root but not in the vasculature. Oppositely, Itoh et al. (1998) observed *E. coli* O157:H7 in and on the xylem elements of radish sprouts when seeds were contaminated. Scanning confocal laser microscopy images of alfalfa roots showed extensive colonization of
enteric bacteria on cracks in the lateral roots (Dong et al., 2003), suggesting that bacteria may enter the plant through these cracks. The results of these studies indicate that bacterial surface moieties can influence the ability of the pathogen to interact with plant roots, but specific bacterial mechanisms that may promote internalization remain ill-defined.

Internalization of Viral Pathogens into Crops

While most research efforts have focused on the possibility of internalization of human pathogenic bacteria into crops, human enteric viruses also pose a threat to produce safety. From 1973 to 2006, 60% of U.S. foodborne outbreaks associated with the consumption of leafy greens were caused by noroviruses, while Salmonella and E. coli each only accounted for 10% of outbreaks (Herman et al., 2008). While many outbreaks caused by foodborne viruses involve foods contaminated by food handlers, several outbreaks have been associated with environmental contamination of fresh produce (CDC, 1971; Dentinger et al., 2001; Rosenblum et al., 1990; Wheeler et al., 2005). One of the largest outbreaks of hepatitis A virus (HAV) in the United States was linked to consumption of green onions contaminated with HAV imported from Mexico in 2003, leading to over 1000 illnesses and four deaths (Wheeler et al., 2005). The exact means of contaminated green onions implicated in the outbreak is unknown, but the green onions were believed to have been grown in conditions in which the crops were contaminated through farm workers or water used for irrigation, rinsing, processing, cooling, and icing (Wheeler et al., 2005).

Intrinsic differences exist between enteric viruses and bacteria, including size and surface structure. Viral persistence and motility in soil and hydroponic solution will affect their ability to internalize to root systems, and may vary from the results observed with bacteria. Limited research has been conducted on the ability of enteric viral pathogens to internalize into plant tissue via root uptake. Methods and results of these studies are summarized in Table 3. Similar to studies with human pathogenic bacteria, growth substrate played a large role in the ability of viruses to internalize through root uptake. Studies using hydroponic solution as the growth substrate showed greater viral uptake than plants grown in soil (Chancellor et al., 2006; Hirneisen et al., 2009; Hirneisen and Kniel, 2010; Oron et al., 1995; Urbanucci et al., 2009; Ward and Mahler, 1982; Wei et al., 2011). These studies also assessed other factors that have the potential to influence root uptake of enteric viruses into plant tissues, including severed tips, water quality, and the common use of non-pathogenic surrogates because human noroviruses are noncultivable.

In a study by Ward and Mahler (1982), severing the roots at the midpoint of corn and bean plants grown in hydroponic systems resulted in a significantly greater internalization of bacteriophage f2 (10^6 PFU/g of plant tissue) as compared to intact roots (10^7 PFU/g of plant tissue). A gradient effect in the distribution of phage within the bean plant was observed, with more phage particles present in the stem than in the leaves, suggesting the interior tissues of the plant act as molecular sieves and permit only a portion of the phage to continue to the next barrier (Ward and Mahler, 1982). Water quality was observed to affect poliovirus internalization into tomato plants irrigated with subsurface irrigation systems. Poliovirus was not detected in either the leaves or tomato fruit when plants were inoculated with poliovirus contaminated

<table>
<thead>
<tr>
<th>Virus</th>
<th>Crop</th>
<th>Growth conditions</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriophage f2</td>
<td>Bean and corn</td>
<td>Hydroponic solution inoculated with 10^10 PFU/mL phage f2</td>
<td>Maximal phage concentrations of 106 PFU/g in plants with cut roots</td>
<td>Ward and Mahler, 1982</td>
</tr>
<tr>
<td>Poliovirus</td>
<td>Tomato</td>
<td>Inoculated via subsurface irrigation in soil</td>
<td>Virus not detected in either leaves or tomatoes, wastewater; positive internalization with tap water</td>
<td>Oron et al., 1995</td>
</tr>
<tr>
<td>HAV/fluorescent microspheres</td>
<td>Green onion</td>
<td>Soil</td>
<td>No internalization</td>
<td>Chancellor et al., 2005</td>
</tr>
<tr>
<td>CaCV, human NoV</td>
<td>Lettuce</td>
<td>Soil inoculated by contaminated water</td>
<td>CaCV detected in lettuce in a few samples, NoV not internalized</td>
<td>Urbanucci et al., 2009</td>
</tr>
<tr>
<td>Murine norovirus</td>
<td>Romaine lettuce</td>
<td>Hydroponic solution; high dose (10^8 RT-qPCRU/mL) one time and low dose (10^5 RT-qPCRU/mL) constant exposure; 70% and 99% humidity conditions</td>
<td>MNV levels in lettuce challenged with one high dose higher than with constant low dose exposure; 10-fold higher internalization at 70% humidity</td>
<td>Wei and Kniel, 2011</td>
</tr>
<tr>
<td>HAV/MNV</td>
<td>Green onion and spinach</td>
<td>Soil</td>
<td>HAV and MNV were not internalized with the exception of 1 spinach plant out of 10 sampled positive for internalized HAV. Both HAV and MNV were detected in leaves, roots and stems of spinach, and green onions at titers up to 4 log RT-qPCR units/plant.</td>
<td>Hirneisen et al., 2009</td>
</tr>
</tbody>
</table>

PFU, plaque-forming unit; CaCV, canine calcivirus; NoV, norovirus; HAV, hepatitis A virus; MNV, murine norovirus.
wastewater; however, poliovirus was detected in the leaves of plants irrigated with poliovirus-contaminated tap water (Oron et al., 1995). The authors suggested that poliovirus was closely bound to organic matter in the wastewater and therefore unable to internalize into the plant.

The importance of virus type and use of surrogates in hydroponic internalization studies was also studied (Chancellor et al., 2006; Urbanucci et al., 2009). When both the HAV vaccine and fluorescent microspheres were internalized into green onions grown in hydroponic solution were assessed, the HAV vaccine was not detected in green onion, but fluorescent microspheres were (Chancellor et al., 2005). One critique of this study was that fluorescent microspheres are not an appropriate surrogate for enteric viruses in internalization studies because of the size differential between the viruses (10–30 nm) and the microspheres (1–10 μm) (Rawsthorne et al., 2009). The potential for internalization of human norovirus and canine calcivirus (CaCV) into lettuce plants grown in contaminated hydroponic cultures was assessed (Urbanucci et al., 2009). CaCV was detected in lettuce leaves for all samples grown hydroponically and in four of 28 leaves when lettuce was grown in soil, whereas noroviruses (NoVs) were not detected in any lettuce tissue grown in either hydroponic or soil systems. Differences in the capacity of the two viruses to internalize were concluded to be due to the differences in surface properties (Urbanucci et al., 2009). The difference in these results examining viral internalization illustrates the importance of using human pathogenic viruses in experiments.

Hirneisen and Kniel (2010) observed internalization of murine norovirus (MNV) and HAV into spinach and green onion plants when grown hydroponically but not in soil systems (Hirneisen et al., 2009). MNV and HAV were detected by quantitative polymerase chain reaction (qPCR) in all portions of both green onion and spinach plants including edible portions at concentrations up to 10^4 real-time (RT)-qPCR/plant. The internalization and uptake of MNV, a surrogate for human NoV, into romaine lettuce was assessed in two irrigation water contamination systems: a one-time severe contamination event and a low constant contamination (Wei et al., 2011). Lettuce grown in hydroponic systems challenged once at a high dose (10^8 RT-qPCRU/mL) had significantly higher levels of internalized virions compared to lettuce irrigated daily with 10^9 RT-qPCRU/mL MNV. Cell culture assays indicated that MNV internalized into lettuce leaves were still infectious. Transpiration is the driving force of water absorption by the plant from the growing substrate (Kramer et al., 1983), and humidity is a major factor controlling plant transpiration, as high humidity will reduce the diffusion of water out of the leaf and slow the transpiration rate (Conger and Portier, 2001; Tanner and Beevers, 2001). Wei et al. (2011) assessed MNV internalization in romaine lettuce plants when grown under conditions of 70% and 99% humidity. Lettuce grown in 70% humidity resulted in a 10-fold higher transpiration rate and significantly greater internalization of MNV as compared to plants grown in 99% humidity. These results suggest that viruses may be taken up in a passive manner by transpiration (Wei et al., 2011).

Conclusion

Increasing numbers of outbreaks involving environmental contamination of produce have resulted in questions about the attachment and interactions of pathogens on and in plants. This review primarily addresses pathogen uptake through roots because the potential internalization of human enteric pathogens into the vascular tissue from the root could protect the pathogen from any post-harvest processing treatments. From the current studies reviewed here, it is difficult to determine which conditions can promote the internalization of human foodborne pathogens by root uptake into crops because these studies vary extensively in experimental design, results, and produce production systems. This variability in design and results likely better represents the realities and risks of internalization after a contamination event during produce production. Taking into account these variations, several conclusions can be reached: (1) uptake through internalization is a plant–pathogen specific interaction; (2) the plant growth substrate used plays a large role in the uptake of both bacterial and viral pathogens in plants; (3) intact, healthy, non-injured roots seem to discourage the uptake of bacteria cells and viruses into plants; and (4) generally, the presence of internalized pathogens in roots of plants does not directly correlate with internalized pathogens in the edible or foliar tissues of crops. In addition, contaminated soil, for the most part, resulted in little to no observed internalization as compared to contaminated hydroponic solution. For those studies where internalization was observed in soil-grown crops, internalization was sporadic and at low levels. Generally, environmentally stressful plant growth conditions did not promote internalization. While these results vary, the risk of root uptake of pathogens into produce through the roots from contaminated soil is relatively low. Future internalization studies to be conducted with enteric pathogens should include realistic plant growth conditions, along with realistic pathogen contamination levels encountered in production systems.

Disclosure Statement

No competing financial interests exist.

References

Hirneisen KA, Kniel KE. Hydroponic internalization of enteric viruses into green onions and spinach. Presented at the International Association for Food Protection Annual Meeting, Anaheim, CA, 2010.

Address correspondence to: Kalmia E. Kniel, Ph.D.
Department of Animal and Food Sciences
University of Delaware
044 Townsend Hall
Newark, DE 19716
E-mail: kniel@udel.edu