The mitochondrial genome of the soybean cyst nematode, *Heterodera glycines*

Tracey Gibson, Daniel Farrugia, Jeff Barrett, David J. Chitwood, Janet Rowe, Sergei Subbotin, and Mark Dowton

Abstract: We sequenced the entire coding region of the mitochondrial genome of *Heterodera glycines*. The sequence obtained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of approximately 21–22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochondrial strand. The organization of the mitochondrial genome of *H. glycines* shows a number of similarities compared with *Radopholus similis*, but fewer similarities when compared with *Meloidogyne javanica*. Very few gene boundaries are shared with *Globodera pallida* or *Globodera rostochiensis*. Partial mitochondrial genome sequences were also obtained for *Heterodera cardiolata* (5.3 kb) and *Punctodera chalcoensis* (6.8 kb), and these had identical organizations compared with *H. glycines*. We found PCR evidence of a minicircular mitochondrial genome in *P. chalcoensis*, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipartite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate.

Key words: mitochondrial, nematode, gene rearrangement, *Punctodera*, Punctoderaeinae, Heteroderidae, *Heterodera cardiolata*.

Résumé : Les auteurs ont séquencé complètement la région codante du génome mitochondrial de l’*Heterodera glycines*. La séquence obtenue mesure 14,9 kb et des évidences PCR indiquent que le génome entier serait composé d’une seule molécule circulaire d’environ 21–22 kb. Ce génome est le génome mitochondrial le plus riche en T jamais rapporté chez les nématodes, les T constituant plus de la moitié de tous les nucléotides sur le brin codant. Le génome compte également le nombre le plus élevé de suites poly(T) vu à ce jour (au meilleur de leur connaissance), avec 60 suites comptant plus de 12 T. Tous les gènes sont transcrits à partir du même brin mitochondrial. L’organisation du génome mitochondrial chez l’*H. glycines* affiche de nombreuses similarités avec celui du *Radopholus similis*, mais moins de similitude lorsque comparé à celui du *Meloidogyne javanica*. Très peu de frontières entre les gènes sont en commun avec le *Globodera pallida* ou le *Globodera rostochiensis*. Des séquences partielles du génome mitochondrial ont également été obtenues pour le *Heterodera cardiolata* (5,3 kb) et le *Punctodera chalcoensis* (6,8 kb), et ceux-ci présentaient une organisation identique à celle du *H. glycines*. Les auteurs ont trouvé des évidences PCR d’un génome mitochondrial circulaire miniature chez le *P. chalcoensis*, mais à de faibles niveaux et sans région non-codante. Des tels fragments de génome circularisés sont possiblement présents en faible nombre chez plusieurs nématodes, les génomes mitochondriaux multipartities constituant une transition vers une condition où ces cercles subgénomiques prédominent.

[Traduit par la Rédaction]

Introduction

Heterodera glycines Ichinohe (the soybean cyst nematode) is a plant parasitic nematode belonging to the family Heteroderidae. It is a major pest of soybean crops both in Asia and the USA (Subbotin et al. 2001a). A number of races (Riggs and Schmitt 1988) or types (Niblack et al. 2002) of *H. glycines* have been identified, primarily based on their ability to...
infest a number of indicator soybean cultivars. Genetic approaches for distinguishing *H. glycines* populations could provide a means of rapidly distinguishing these types. However, such genetic markers have not yet been developed. The mitochondrial genome of *H. glycines* may provide such genetic markers. For example, intergenic regions in the mitochondrial genome of *Apis mellifera* have been used to distinguish different populations (Cornuet et al. 1991).

The mitochondrial genome of animals is normally a circular, double-stranded molecule containing 36–37 genes: 12–13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes (Boore 1999). Mitochondrial genomes can provide two types of characters for the resolution of phylogeny. The first type is the more traditional set of aligned sequences that can be analyzed by parsimony or likelihood; mitochondrial genomes can provide datasets that are typically 10 000–16 000 characters long. The second type of character is extracted from the organization of the mitochondrial genome (Dowton et al. 2002). It has been argued that large-scale genome changes occur rarely and that reversions or secondary losses will be even rarer (Boore et al. 1998; Rokas and Holland 2000). As a result, mitochondrial gene rearrangements have been used to infer phylogeny between a number of animal groups (Boore et al. 1998; Boore and Staton 2002; Dowton 1999; Dowton et al. 2002; Knudsen et al. 2006; Kurabayashi and Ueshima 2000; Smith et al. 1993). The Heteroderidae represent a group in which mitochondrial gene rearrangement characters may be informative. Extensive gene rearrangements have occurred during the evolution of the Hoplolaimoidea (to which the Heteroderidae belong), as evident from the very different genome organizations of *Meloidogyne javanica* (from the Meloidogyneidae) (Okimoto et al. 1991), *Radopholus similis* (Jacob et al. 2009), *Globodera pallida* (Armstrong et al. 2000; Gibson et al. 2007b), and *Globodera rostochiensis* (Gibson et al. 2007a).

In this study, we report the complete coding sequence of the mitochondrial genome of *H. glycines*. Although a portion of the noncoding region could not be sequenced, our data allow us to identify the relative position of each of the 36 mitochondrial genes commonly found in nematodes and to compare the organization of the *H. glycines* mitochondrial genome with other nematodes. In addition, we sequence partial mitochondrial genomes of *Heterodera cardiolata* and *Punctodera chalcoensis*, to obtain a more complete understanding of the history of mitochondrial gene rearrangement in the Heteroderidae.

Materials and methods

Genomic DNA extraction

Cysts from *H. glycines* (USA), *H. cardiolata* (= *Heterodera cynodontis*, Pakistan), and *P. chalcoensis* (Mexico) were collected and stored in 95% ethanol at 4 °C. Genomic DNA from single cysts was prepared as described (Sunnucks and Hales 1996). We verified the identity of each species by amplifying and sequencing the ITS1 and ITS2 regions, using the primers described in Subbotin et al. (2001b). For these reactions, we used the Bio-X-Act long PCR system (Bioline, Australia).

Amplification and sequencing of mitochondrial fragments

We designed primers to anneal to conserved regions of nematode mitochondrial genes and amplified a number of internal gene fragments from each of the three nematodes studied (primer sequences available upon request). We then designed precisely matching primers, using the sequence data obtained, and amplified a number of multigenic fragments. All amplifications were performed as previously described, using the Bio-X-Act long PCR system (Gibson et al. 2007a). Owing to the presence of poly(T) variation in the amplicons (Riepsamen et al. 2008), most multigenic fragments were then cloned directly into the pGEM-T Easy vector system (Promega, Madison, Wisconsin) and sequenced by primer walking. As this poly(T) variation has been found to be primarily an artefact of amplification of templates with extensive poly(T) regions (Riepsamen et al. 2011), we sequenced multiple clones to infer the biological length of these poly(T) regions.

Step-out PCR amplification

An approximately 7-kb fragment of the *H. glycines* mitochondrial genome was amplified and sequenced using long PCR (described above). This fragment spanned the *cox2–cob* genes. Step-out PCR (Burger et al. 2007) was then used to amplify the flanking regions of this fragment. In the first round of step-out PCR, genomic DNA was amplified using a single outward-facing, species-specific primer. After an initial denaturation at 94 °C for 2 min, the cycling conditions for cycles 1–5 were as follows: 94 °C for 20 s, annealing (temperature set at 5 °C below the melting temperature of the primer) for 20 s, and 68 °C for 8 min. The use of a high annealing temperature is designed to increase the concentration of the desired template by linear (single stranded) amplification. In cycle 6, the conditions remain the same, but the annealing temperature is dropped to 30 °C (for 2 min) to facilitate annealing of the species-specific primer to other regions of the desired template. Cycles 7–22 comprise a touch-down PCR, in which the cycling conditions remain the same, but the annealing temperature is increased to 65 °C (for 20 s), dropping by 1 °C each cycle. The touch-down approach is designed to amplify only those double-stranded molecules produced during cycle 6 (reducing the amount of nonspecific amplification). In cycles 23–40, the annealing temperature is raised to that used during cycles 1–5. The extension time is increased by 30 s in each of cycles 23–40, to offset any reduction in enzyme activity that has occurred. A final incubation at 68 °C for 12 min is included, to complete the synthesis of any partial amplicons.

In the second round of the step-out procedure, two primers were used. One of these was the species-specific primer used in round 1, while the second was another species-specific primer designed from previously acquired sequencing data downstream of the species-specific primer. Amplification using this seminested approach was optimized using an annealing temperature gradient. Generally, single high molecular mass amplicons were only produced using relatively high annealing temperatures. These high molecular mass products were purified by agarose gel electrophoresis and cloned into the pGEM-T Easy vector system. Once the step-out product was sequenced, precisely matching primers were designed and the data were verified by long PCR of genomic DNA.
followed by sequencing. As data accumulated, successive rounds of step-out PCR were performed to obtain the entire coding sequence of the mitochondrial genome.

Genome annotation

ORFfinder (www.ncbi.nlm.nih.gov/gorf/gorf.html) was used to identify protein-coding genes. The tRNAscan-SE 1.21 (Lowe and Eddy 1997) search server was used to identify tRNA genes using the following settings: source, Nematode Mito; genetic code for tRNA isotype prediction, Invertebrate Mito; and cove score cutoff, 10. Although the authors of tRNAscan recommend a cove cutoff of 20 for organelle tRNA genes (to avoid false positives), we set the cutoff to 10 to screen all putative tRNA genes — this strategy has been useful for the detection of a range of insect tRNA genes (Castro et al. 2006; Dowton 1999). Nematode mitochondrial tRNA genes display more plastic secondary structure (and presumably lower cove scores) than most other sources of tRNA (Wolstenholme et al. 1987). We employed an additional criterion to identify tRNA genes: that the tRNA gene should not lie within a protein-coding gene, but lie in the small intergenic regions between genes (or in the longer non-coding regions). rRNA genes were identified by rRNA BLAST search (www.psb.ugent.be/rRNA/blastrRNA.html). Partial mitochondrial genome sequences were deposited in GenBank, accession numbers HM640928–HM640930.

Results and discussion

Sequencing of the mitochondrial-coding regions of H. glycines

Using primers designed to anneal to conserved regions of nematode mitochondrial genes, we amplified a number of internal gene fragments. We then designed precisely matching primers, using the sequence data obtained, and amplified a number of multigenic fragments. This produced a contiguous fragment of approximately 7 kb, spanning the nad5–cob genes. However, attempts to amplify the remainder of the genome by long PCR (using outwardly facing primers) were unsuccessful. Instead, we employed step-out PCR (Burger et al. 2007) to obtain the remainder of the coding region of the genome. Each step-out product was cloned and sequenced, and the organization of the genome was checked by designing PCR primers with the newly obtained sequence data. The step-out products were validated by amplification of genomic DNA, using primers that amplified fragments that bridged the previous and newly acquired sequence.

With this approach, we amplified and sequenced 14.9 kb of the H. glycines mitochondrial genome. Bioinformatic analysis of this fragment indicated that it contained the 36 mitochondrial genes normally found in nematode mitochondrial genomes. However, the entire noncoding region proved very difficult to amplify. Utilizing outward-facing primers that annealed within the control region, we amplified a faint product of 6–7 kb, but this product was resistant to cloning. This may have been due to the presence of a repeats in the control region. From this information, we estimate that the entire mitochondrial genome of H. glycines is 21–22 kb, broadly consistent with an estimate of 22.5–23.5 kb after characterization of the restriction fragments produced from purified H. glycines mitochondrial DNA (Radice et al. 1988).

Nucleotide content of the H. glycines mitochondrial genome

The nucleotide composition of the coding strand was extremely biased, with T representing more than half of the nucleotides (58% T, 24% A, 10% G, and 7% C). This trend (T > A > G > C) has been reported for a number of other nematodes (Hu et al. 2003b, 2003c; Jacob et al. 2009) (Table 1). Indeed, a survey of all completely sequenced nematode mitochondrial genomes indicated that chromodorea have a T-content of between 45% and 58% (although Caenorhabditis briggsae is a notable exception, with a T-content of only 30%). The highest T-content is found in H. glycines (58%), although Brugia malayi (54%), Dirofilaria immitis (55%), Onchocerca volvulus (54%), and R. similis (53%) have comparable levels. By comparison, enoplo nematodes tend to have slightly lower T-contents, with a range of 27% (Trichinella spiralis) to 44% (Agamernis sp.). A comparison with other pseudocoelomates (from the phyla Anacocephala and Rotifera) indicates that they also have elevated T-contents (Table 1). A high T-content appears to be a feature of pseudocoelomates, with the highest levels evident in the nematode orders Spirurida and Tylenchida (Table 1).

An unusual feature of the genome is the presence of long stretches of T nucleotides, hereafter referred to as poly(T) tracts. This has been noted for other nematodes (Hu et al. 2003b; Jacob et al. 2009; Riepsamen et al. 2008). For example, Strongyloides stercoralis has 16 poly(T) tracts ≥ 12 Ts, with the longest tract 23 nucleotides long (Hu et al. 2003b). In comparison, H. glycines has 60 poly(T) tracts ≥ 12 Ts, with the longest tract also 23 nucleotides long (Table 2). In S. stercoralis, the longest poly(T) tract lies within the 16S gene, but in H. glycines it lies within the nad2 gene. To our knowledge, H. glycines has the most extreme T-content and the highest number of poly(T) tracts amongst the nematodes.

Codon usage and amino acid bias

The high T-content is reflected in a biased use of synonymous codons and a biased amino acid content. For example, phenylalanine can be encoded by TTT or TTC; the occurrence of TTT is more than 20 times that of TTC, while nearly one-third of all amino acids are phenylalanine (encoded by the most T-rich codon; Table 3). For every amino acid, the most T-rich synonymous codon outnumber the sum of all other synonymous codons (Table 3). Our data were not consistent with the genetic code change suggested for R. similis, in which it has been proposed that the UAA stop codon is reassigned to tyrosine (Jacob et al. 2009). The conclusion of codon reassignment was based on the presence of premature stop codons in each of the 12 protein-coding genes (Jacob et al. 2009). Although we have reported the occurrence of premature stop codons in other heteroderid nematodes (Gibson et al. 2007b; Riepsamen et al. 2008), this was later found to be due to amplification errors (Riepsamen et al. 2011). Long poly(T) tracts are inaccurately amplified, with single T deletions being the most common error (Riepsamen et al. 2011). These T deletions introduce artefactually premature stop codons in the sequence obtained. Radopholus similis also has long poly(T) tracts (Table 2), and we suspect that amplification introduces T deletions in this species and that this is the underlying reason for the observation of premature stop codons in R. similis. An alternative explanation
is that +1 or +2 frameshifts correct the reading frame and remove the premature stop codons. During translation +1 frameshifts involve the slippage of the mRNA such that the reading frame is shifted by a single nucleotide — such frameshifts are usually preceded by rare codons that may mediate the slippage and have been reported in the mitochondrial genes of birds, turtles (Mindell et al. 1998), and ants (Beckenbach et al. 2005). If such translational slippage occurs in H. glycines, it would have to involved both +1 and +2 frameshifts in order for all genomic sequences to give rise to functional products. In addition, the poly(T) tracts of H. glycines were not preceded by a rare codon.

Table 1. Nucleotide composition of the coding strand of nematode mitochondrial genomes.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>%T</th>
<th>%A</th>
<th>%G</th>
<th>%C</th>
<th>GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum Nematoda Class Chromadorea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Ascaradida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anisakis simplex</td>
<td>48.3</td>
<td>22.9</td>
<td>19.0</td>
<td>9.8</td>
<td>AY994157</td>
</tr>
<tr>
<td>Ascaris suum</td>
<td>49.8</td>
<td>22.2</td>
<td>20.4</td>
<td>7.7</td>
<td>X54253</td>
</tr>
<tr>
<td>Toxocara canis</td>
<td>46.7</td>
<td>21.9</td>
<td>22.0</td>
<td>9.4</td>
<td>AM411108</td>
</tr>
<tr>
<td>Order Oxyurida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterobius vermicularis</td>
<td>49.5</td>
<td>21.7</td>
<td>22.6</td>
<td>6.2</td>
<td>EU281143</td>
</tr>
<tr>
<td>Order Rhabditida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancylostoma caninum</td>
<td>48.5</td>
<td>29.0</td>
<td>16.1</td>
<td>6.5</td>
<td>FJ483518</td>
</tr>
<tr>
<td>Banostomum phlebotomum</td>
<td>50.1</td>
<td>26.9</td>
<td>16.7</td>
<td>6.2</td>
<td>FJ483517</td>
</tr>
<tr>
<td>Necator americanus</td>
<td>49.2</td>
<td>27.4</td>
<td>17.1</td>
<td>6.3</td>
<td>AJ417719</td>
</tr>
<tr>
<td>Angiostrongylus cantonensis</td>
<td>48.7</td>
<td>24.5</td>
<td>20.6</td>
<td>6.1</td>
<td>NC_013065</td>
</tr>
<tr>
<td>Metastreptomyces pudenditectorius</td>
<td>51.4</td>
<td>26.1</td>
<td>16.7</td>
<td>5.8</td>
<td>GQ888714</td>
</tr>
<tr>
<td>Syngamus trachea</td>
<td>47.8</td>
<td>26.0</td>
<td>18.8</td>
<td>7.4</td>
<td>GQ888718</td>
</tr>
<tr>
<td>Chabertia ovina</td>
<td>46.7</td>
<td>29.6</td>
<td>16.3</td>
<td>7.4</td>
<td>GQ888721</td>
</tr>
<tr>
<td>Oesophagostomum dentatum</td>
<td>47.1</td>
<td>28.6</td>
<td>17.1</td>
<td>7.2</td>
<td>GQ888716</td>
</tr>
<tr>
<td>Cylilocyclus insignis</td>
<td>46.0</td>
<td>30.6</td>
<td>16.6</td>
<td>6.8</td>
<td>GQ888712</td>
</tr>
<tr>
<td>Strongylyus vulgaris</td>
<td>47.2</td>
<td>29.3</td>
<td>16.8</td>
<td>6.7</td>
<td>GQ888717</td>
</tr>
<tr>
<td>Cooperia oncophora</td>
<td>47.3</td>
<td>30.1</td>
<td>16.1</td>
<td>6.5</td>
<td>AY265417</td>
</tr>
<tr>
<td>Haemonchus contortus</td>
<td>44.7</td>
<td>33.4</td>
<td>15.4</td>
<td>6.5</td>
<td>EU346694</td>
</tr>
<tr>
<td>Mecistocirrus digitatus</td>
<td>45.7</td>
<td>34.0</td>
<td>14.4</td>
<td>5.9</td>
<td>GQ888722</td>
</tr>
<tr>
<td>Teladorsagia circumcincta</td>
<td>46.1</td>
<td>31.0</td>
<td>15.6</td>
<td>7.3</td>
<td>GQ888720</td>
</tr>
<tr>
<td>Trichostrongylus axei</td>
<td>45.3</td>
<td>31.1</td>
<td>17.0</td>
<td>6.6</td>
<td>GQ888719</td>
</tr>
<tr>
<td>Steinernema carpocapsae</td>
<td>50.8</td>
<td>25.5</td>
<td>14.4</td>
<td>9.3</td>
<td>AY591323</td>
</tr>
<tr>
<td>Heterorhabditis bacteriophora</td>
<td>47.0</td>
<td>28.8</td>
<td>16.1</td>
<td>8.1</td>
<td>EF043402</td>
</tr>
<tr>
<td>Caenorhabditis elegans</td>
<td>44.8</td>
<td>31.4</td>
<td>14.9</td>
<td>8.9</td>
<td>X54252</td>
</tr>
<tr>
<td>Order Spirurida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brugia malayi</td>
<td>53.9</td>
<td>21.6</td>
<td>16.8</td>
<td>7.7</td>
<td>AF538716</td>
</tr>
<tr>
<td>Dirofilaria immitis</td>
<td>54.9</td>
<td>19.3</td>
<td>19.3</td>
<td>6.6</td>
<td>AJ537512</td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>54.0</td>
<td>19.3</td>
<td>19.8</td>
<td>6.9</td>
<td>AF015193</td>
</tr>
<tr>
<td>Order Tylenchida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radopholus similis</td>
<td>52.9</td>
<td>32.5</td>
<td>10.2</td>
<td>4.4</td>
<td>FN313571</td>
</tr>
<tr>
<td>Globodera pallida (circle 1)</td>
<td>46.2</td>
<td>20.0</td>
<td>20.5</td>
<td>13.2</td>
<td>AJ249395</td>
</tr>
<tr>
<td>Heterorhabditis glycines</td>
<td>58.5</td>
<td>24.2</td>
<td>10.4</td>
<td>6.9</td>
<td>HM640930</td>
</tr>
<tr>
<td>Class Enoplea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order Mermithida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agameris sp.</td>
<td>43.7</td>
<td>36.8</td>
<td>9.9</td>
<td>9.6</td>
<td>DQ666566</td>
</tr>
<tr>
<td>Hexameris agrotis</td>
<td>37.4</td>
<td>41.0</td>
<td>10.9</td>
<td>10.7</td>
<td>EF368011</td>
</tr>
<tr>
<td>Romanomeris calicivorus</td>
<td>38.0</td>
<td>41.3</td>
<td>10.4</td>
<td>10.3</td>
<td>EF154459</td>
</tr>
<tr>
<td>Strelokimeris speculatus</td>
<td>42.5</td>
<td>36.0</td>
<td>11.3</td>
<td>10.1</td>
<td>DQ520859</td>
</tr>
<tr>
<td>Thaumameris cosgrovei</td>
<td>39.3</td>
<td>32.1</td>
<td>14.7</td>
<td>13.9</td>
<td>DQ520857</td>
</tr>
<tr>
<td>Trichinella spiralis</td>
<td>26.6</td>
<td>40.6</td>
<td>9.8</td>
<td>23.0</td>
<td>AF293969</td>
</tr>
<tr>
<td>Phylum Acanthocephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptorhynchoides thecatus</td>
<td>44.6</td>
<td>26.8</td>
<td>19.9</td>
<td>8.4</td>
<td>AY562383</td>
</tr>
<tr>
<td>Phylum Rotifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotaria rotatoria</td>
<td>43.7</td>
<td>29.5</td>
<td>17.4</td>
<td>9.5</td>
<td>GQ304898</td>
</tr>
<tr>
<td>Brachionus plicatilis</td>
<td>36.0</td>
<td>27.0</td>
<td>20.7</td>
<td>16.3</td>
<td>NC_010484</td>
</tr>
</tbody>
</table>

Note: Entire mitochondrial genome data was accessed from GenBank on 20th April 2010. Only a single species was included for genera with multiple representatives.
Mitochondrial genome organization in *H. glycines*

Figure 1 shows the organization of genes on the 14.9 kb of sequence data obtained. The genome contains a major non-coding region (between *trnG* and *trnN*), which we estimate to be 7–8 kb long. There are also smaller noncoding tracts between the *a6* and *nad5* genes (330 nucleotides), the *trnR* and *trnD* genes (335 nucleotides), and between the *nad4L* and *trnG* genes (130 nucleotides). These noncoding tracts represent regions that could be amplified from a range of *H. glycines* populations, to investigate whether they might be used to distinguish *H. glycines* populations. A similar approach has been used to distinguish various populations of *A. mellifera* (Cornuet et al. 1991).

Our sequence data are consistent with *H. glycines* possessing a conventional, single circle mitochondrial genome, with the 36 genes normally present on nematode mitochondrial genomes present on the one fragment. We found no evidence for the multipartite structure reported for *G. pallida* and *G. rostochiensis* (Armstrong et al. 2000; Gibson et al. 2007a), in which these genes are distributed on multiple circles with overlapping content.

As is the case for other nematodes from the class Chromadorea, all 36 genes are transcribed in the same direction (e.g., Hu et al. 2003a, 2002, 2003b, 2003c; Okimoto et al. 1992). The two ribosomal genes (*12S* and *16S*) are not found adjacent to each other. This is also the case for other nematodes (He et al. 2005), although *T. spiralis* is a notable exception (Lavrov and Brown 2001).

Comparison of mitochondrial genome organization with other nematodes from the Hoplolaimoidea

Table 2 indicates those members of the Hoplolaimoidea for which some mitochondrial genome organization is available, together with their classification — this provides a framework for comparisons. Some gene boundaries are shared with other nematodes from the superfamily Hoplolaimoidea. The organization of the mitochondrial genome of *R. similis* (Jacob et al. 2009) shows the highest level of similarity to that of *H. glycines* (Fig. 2). If tRNA genes are ignored, a large block containing six protein-coding and two ribosomal RNA genes are identically organized in the two (Fig. 2). Similarly, *nad6* and *nad4L* are adjacent in both genomes, as are *nad4* and *cob*, and *nad2* and *cox3*. A similar comparison of *H. glycines* with *M. javanica* (He et al. 2005; Okimoto et al. 1991) reveals many fewer shared gene boundaries (if tRNA genes are ignored), with the largest block being three genes long (*cox2–16S–nad3*) (see Supplementary data,1 Table S1). The higher level of organizational similarity between *H. glycines* and *R. similis* is consistent with the close relationship between the Pratylenchidae (to which *Radopholus* belongs) and the Heteroderidae, while Meloidogynidae and Heteroderidae are more distantly related (Bert et al. 2008). Our mitochondrial genome organization data are also consistent with recent molecular analyses of the Tylenchida. Based on an analysis of the 28S rRNA gene, Subbotin et al. (2006) reported that the data did not support the traditional sister grouping of Meloidogynidae and Heteroderidae. Although the level of support was not convincing (in terms of bootstrap support or posterior probabilities), the Heteroderidae were most consistently recovered in a clade together with the Hoplolaimidae, Rotylenchulidae, and *Radopholus*. The data were sufficient to reject the traditional hypothesis (Heteroderidae + Meloidogynidae).

We then compared the genome organization of *G. pallida* (Armstrong et al. 2000; Gibson et al. 2007b) and *G. rosto-

Table 2. Length and frequency of poly(T) tracts in nematode mitochondrial genomes with high T-content.

<table>
<thead>
<tr>
<th>Length of poly(T) region (nt)</th>
<th>Number of occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongyloides scoticus</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td>≥12</td>
<td>16</td>
</tr>
<tr>
<td>T-content</td>
<td>56%</td>
</tr>
</tbody>
</table>

1Supplementary data are available with the article at www.nrcresearchpress.com/gen
Although the two *H. glycines* to *H. cardiolata* and *H. cardiolata* are relatively divergent members of the Heteroderinae (Ma et al. 2008; Subbotin et al. 2001b). A comparison of their genomes would, thus, provide an indication of the level of variability of organizational structure within the Heteroderinae.

Using primers designed to anneal to conserved regions of the nematode *nad4* and *cox2* genes, we amplified a 5.5-kb mitochondrial fragment from *H. cardiolata*. Similarly, using *cox1* and *nad4* primers, we were able to amplify a *nad4–cox1* fragment (3 kb), and we also amplified a *cox1–cox2* fragment (2.5 kb) using *cox1* and *cox2* primers. We cloned and sequenced these two latter fragments, as they presumably represent portions of the larger 5.5-kb amplon. Sequence data indicated the partial genome organization shown in Fig. 2. This indicated that the organization of genes in these mitochondrial fragments was identical when *H. glycines* and *H. cardiolata* are compared.

Partial mitochondrial genome organization in *P. chalcoensis*

Punctodera chalcoensis is a member of the Punctoderinae, and thus represents a distinct subfamily within the Heteroderidae (compared with the Heteroderinae) and a distinct lineage within the Punctoderinae (compared with *Globodera*) (see Table 4) (Subbotin et al. 2001b). We amplified three overlapping, multigenic fragments from *P. chalcoensis*. Complete sequencing indicated that the fragments were precisely overlapping and comprised a contig of 6.8 kb. The organization of genes within this 6.8 kb was identical to that of *H. glycines* and *H. cardiolata* (Fig. 2). Most attempts to amplify the remainder of the mitochondrial genome, using outwardly facing primers, were unsuccessful (but see below). Step-out PCR is likely necessary to obtain the remainder of this genome, but was beyond the scope of the present investigation. However, one amplification using outwardly facing primers yielded a very faint product, much shorter than expected (primer positions shown in Fig. 3). Amplification with outward facing *nad4* and *cox1* primers yielded an amplicon of 1 kb. Cloning and sequencing of this fragment yielded a sequence that precisely matched some of the sequence obtained from the *nad4* and *cox1* sequences from the larger fragment, but both genes were incomplete; *nad4* was truncated at the 3′ end, while *cox1* was incomplete at the 5′ end. A single A residue sat between these two fragments. Such truncated and rejoined genes were observed in the multipar-
tite mitochondrial genomes of *G. rostochiensis* (Gibson et al. 2007a); small circular mitochondrial DNA III from *G. rostochiensis* (Gro-scmtDNA III) contains a partial *nad4* joined directly to a partial *nad1*. In *G. rostochiensis*, the junction of the two partial genes contained 17 nucleotides that could be aligned with both genes from *G. pallida*. These data were consistent with a repeat-mediated recombination event leading to the deletion of a large portion of Gro-scmtDNA III (Gibson et al. 2007a). We propose that the *nad4–cox1* fragment in *P. chalcoensis* is the result of a similar event. Amplification of genomic DNA with inward-facing *nad4* and *cox1* primers produced a product of 3.9 kb, consistent with there being low levels of minicircular genomes in *P. chalcoensis* (Fig. 3C). However, this minicircle does not contain a non-coding region and may not be able to replicate.

Our data are insufficient to judge whether the mitochondrial genome of *P. chalcoensis* is multipartite. The 6.8-kb contig (Fig. 3A) contains more genes and coding sequence than any of the fully characterized subgenomes of *G. pallida* (Gibson et al. 2007b). If our sequence data from *P. chalcoensis* are found on a subgenome, it must be larger than any of those characterized in *G. pallida*. The failure to amplify the remainder of the *P. chalcoensis* genome using outward facing primers is further evidence that this genome is larger than the multipartite mitochondrial genomes of *G. pallida* and *G. rostochiensis*.

Our data do suggest that *P. chalcoensis* contains low levels of mitochondrial subgenomes, as evident from the *nad4–cox1* fragment (Fig. 3C). Such circularised genome fragments may be present at low levels in a range of nematodes (and have been documented in humans; (Kajander et al. 2000)), with multipartite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate. In humans, such circularised genome fragments are most previ-

Table 4. Members of the Hoplolaimoidea for which some mitochondrial genome organization is available.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoplolaimoidea</td>
<td></td>
</tr>
<tr>
<td>Meloidogynidae</td>
<td></td>
</tr>
<tr>
<td>Meloidogyminae</td>
<td></td>
</tr>
<tr>
<td>Meloidogyne javanica</td>
<td>He et al. 2005; Okimoto et al. 1991</td>
</tr>
<tr>
<td>Pratylenchidae</td>
<td></td>
</tr>
<tr>
<td>Radopholinae</td>
<td></td>
</tr>
<tr>
<td>Radopholus similis</td>
<td>Jacob et al. 2009</td>
</tr>
<tr>
<td>Heteroderidae</td>
<td></td>
</tr>
<tr>
<td>Heteroderinae</td>
<td></td>
</tr>
<tr>
<td>Heterodera glycines</td>
<td>Present study</td>
</tr>
<tr>
<td>Heterodera cardiolata</td>
<td>Present study</td>
</tr>
<tr>
<td>Punctoderinae</td>
<td></td>
</tr>
<tr>
<td>Punctodera chalcoensis</td>
<td>Present study</td>
</tr>
<tr>
<td>Globodera pallida</td>
<td>Armstrong et al. 2000; Gibson et al. 2007b</td>
</tr>
<tr>
<td>Globodera rostochiensis</td>
<td>Gibson et al. 2007a</td>
</tr>
</tbody>
</table>

![Fig. 1. Mitochondrial genome organization of *Heterodera glycines*](image-url) Genes are abbreviated according to Boore (1999), with the tRNA genes indicated by their corresponding one-letter amino acid code. All genes are encoded on the same strand.
lent in tissues subject to high oxidative stress (Kajander et al. 2000). Similarly, plant parasitic nematodes are exposed to high levels of oxidative stress, owing to the generation of reactive oxygen species by the plant, as a response to infection (Apel and Hirt 2004; Waetzig et al. 1999). It is tempting to speculate that an increased prevalence of subgenomic circles results from an increased exposure to reactive oxygen species, but there is no evidence that Globodera (in which subgenomes are most prevalent) are exposed to higher levels of reactive oxygen species than are other plant parasitic nematodes.

The evolution of gene rearrangement in the Hoplolaimoidea

We found only minor differences in mitochondrial genome organization between R. similis, H. glycines, H. cardiolata, and P. chalcoensis. In stark contrast, there were very few gene boundaries shared when either Globodera species was compared with their closest relative examined in this study, P. chalcoensis. This indicates that dramatic reorganization of the mitochondrial genome occurred during the divergence of Punctodera and Globodera. Timing the age of this diver-
gence is difficult, owing to the poor representation of nematodes in the fossil record. However, based on an analysis of both geological and biological information (Picard et al. 2008) the Punctodera and Globodera last shared a common ancestor between 60–173 million years ago.

Both G. pallida and G. rostochiensis have a multipartite mitochondrial genome organization (Armstrong et al. 2000; Gibson et al. 2007a), in which the mitochondrial genes are distributed amongst a number of subgenomic circles. Each circle has a substantial noncoding region, which presumably contains the information for replication and transcription. It is perhaps not surprising that gene rearrangement is extensive in Globodera, given that multipartite mitochondrial genomes are mosaics of each other and are likely formed by intermitochondrial recombination (Gibson et al. 2007b). Thus, the generation of a multipartite structure involves gene rearrangement. However, it is premature to speculate as to whether Punctodera and Heterodera also have multipartite mitochondrial genomes. We consider it unlikely that H. glycines has a multipartite mitochondrial genome, based on our mapping of all 36 nematode mitochondrial genes to a single fragment. The situation is less clear for P. chalcoensis, in which we find evidence of subgenomes with coding sequence, but no noncoding region (and presumably no or reduced capacity for replication). Although it is tempting to speculate that substantial gene rearrangement coincides with the origin of a multipartite structure, our data are currently insufficient to draw this conclusion. A complete characterization of the mitochondrial genome of a representative of the Punctodera is the most direct way of assessing this possibility.

Acknowledgments

Thanks are extended to M.A. Maqbool for providing cysts of H. cardiolata and to V. Blok for helpful discussions on Globodera biology. This work was supported by grants from the Australian Research Council (DP0556520) and the Australian Academy of Science.

References

