The low prevalence of *T. gondii* in bighorn sheep may be due to their habitat: they usually live in remote, mountainous regions of western North America. *Toxoplasma gondii* infection in humans and other animals is generally lower in the mountains than in the plains (Dubey and Beattie, 1988). The low prevalence of *T. gondii* antibodies in bighorn sheep is markedly different from a high prevalence of *T. gondii* in domestic sheep. With the same MAT test used in the present study, antibodies (≥1:64) to *T. gondii* were found in 65.5% of 1,564 sheep from 33 farms in the midwestern United States (Dubey and Kirkbride, 1989). The importance of *T. gondii* in bighorn sheep is unknown but should be considered in areas where the reproductive rate is less than anticipated.

The seroprevalence of *T. gondii* in bighorn sheep in the present study is markedly lower than 22% (178 of 719) seroprevalence in bighorn sheep from California reported by Clark et al. (1993) and Elliot et al. (1994); both studies used the same data. However, these authors did not mention the antibody titers found nor the serologic test used to detect *T. gondii* antibodies. Therefore, we cannot compare their results to the present study.

The authors thank O. C. H. Kwok for performing *T. gondii* serology.

LITERATURE CITED

Prevalence of Antibodies to Toxoplasma gondii in Ostriches (Struthio camelus)

J. P. Dubey, W. B. Scandrett*, O. C. H. Kwok, and A. A. Gajadhar*, United States Department of Agriculture, Agricultural Research Service, Livestock and Poultry Sciences Institute, Parasite Biology and Epidemiology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350; and *Canadian Food Inspection Agency, Centre for Animal Parasitology, Health of Animals Laboratory, Saskatoon, Saskatchewan, Canada S7N 2R3

ABSTRACT: Serum samples from 973 ostriches (*Struthio camelus*) in Canada were examined for antibodies to *Toxoplasma gondii* by the modified agglutination test incorporating mercaptoethanol and formalin-fixed whole tachyzoites. Twenty-eight (2.9%) of the 973 birds were found to be seropositive for antibodies to *T. gondii* at titers of 1:25 in 15 birds, 1:50 in 12 birds, and 1:500 in 1 bird. This is the first record of *T. gondii* exposure in ostriches, and it supports the hypothesis that all avian species are susceptible to *Toxoplasma* infection. Nevertheless, the results of this study suggest that the risk of acquiring toxoplasmosis from ostriches as a food source is low.

Toxoplasma gondii is known to infect many species of warm-blooded animals including birds (Dubey and Beattie, 1988; Dubey, Camargo et al., 1993; Dubey, Ruff et al., 1993a, 1993b; Dubey et al., 1994; Dubey, Goodwin et al., 1995). Ostriches (*Struthio camelus*) are large birds that have been imported into many developed countries where they are raised on game farms as nontraditional livestock. In North America, the ostrich population consists of birds that have been acquired live or as fertilized eggs from overseas sources and from locally established breeding flocks. Meat from ostriches is considered highly palatable and low in fats. Because little is known of *T. gondii* infection in wild or game-farmed raptors, we conducted the present survey for the prevalence of specific antibodies as an indication of *T. gondii* infection.

Blood samples were obtained from 973 captive-ranched ostriches in 6 Canadian provinces representing central (Quebec–36, Ontario–138) and western (Manitoba–47, Saskatchewan–48, Alberta–661, British Columbia–43) regions of the country. Birds were sampled between 4 July and 13 September 1995 and between 11 June and 15 October 1997. Overall, the serum samples represented both sexes, and age of the birds ranged from young to mature adults. Samples were originally collected by routine venipuncture of jugular, brachial, or medial metatarsal veins to accommodate testing for health certification of the birds for international export. Following these required tests, the remaining serum samples were stored at −20 °C and subsequently utilized in this current study.

The samples were shipped frozen to the U.S. Department of Agriculture’s Parasite Biology and Epidemiology Laboratory, Beltsville, Maryland for serologic testing. Sera were diluted 1:25, 1:50, and 1:500 with phosphate-buffered saline and examined for *T. gondii* antibodies using the modified agglutination test (MAT) as previously described (Dubey and Desmonts, 1987). Formalin-fixed tachyzoites were used in the MAT.

Twenty-eight of 973 (2.9%) sera were seropositive for antibodies to *T. gondii* at titers of 1:25 in 15 birds, 1:50 in 12 birds, and 1:500 in 1 bird. A MAT titer of 1:25 is considered indicative of *T. gondii* infection based on statistically validated studies in domestic sheep. The low prevalence of *T. gondii* infection in several animal species including many avian species (Dubey, Camargo et al., 1993; Dubey, Ruff et al.,
Experimental Transmission of Sarcocystis speeri Dubey and Lindsay, 1999 from the South American Opossum (Didelphis albiventeris) to the North American Opossum (Didelphis virginiana)

J. P. Dubey, C. A. Speer†, D. D. Bowman‡, K. M. Horton‡, C. Venturini†, and L. Venturini†, United States Department of Agriculture, Agricultural Research Service, Livestock and Poultry Sciences Institute, Parasite Biology and Epidemiology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350; †Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610; ‡Faculty of Veterinary Sciences, La Plata National University, Research Center, Beltsville, Maryland 20705-2350; †College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; and ‡Faculty of Veterinary Sciences, La Plata National University, Research Center, Beltsville, Maryland 20705-2350; *Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610; Agricultural Research Service, Livestock and Poultry Sciences Institute, Parasite Biology and Epidemiology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350; V Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717-3610; Duszynski, 1978; Duszynski and Box, 1978; Marsh et al., 1997), Sarcocystis neurona (Dubey et al., 1991; Fenger et al., 1997; Dubey and Lindsay, 1998), and Sarcocystis speeri (Dubey et al., 1998; Dubey and Lindsay, 1999). Recently, S. speeri-like organisms were found in the South American opossum, Didelphis albiventeris from Argentina (Dubey, Venturini et al., 2000). In the present paper, we present evidence that an S. speeri-like organism based on morphology from D. albiventeris is transmissible and infective to Didelphis virginiana.

Gamma-interferon knockout (KO) mice (BALB/c-tgH-22-Interferon) were obtained from Jackson Laboratories (Bar Harbor, Maine). The budgerigars (Melopsitticus undulatus) used were obtained from a local avairy. Two experiments were performed.

In experiment 1, sporocysts from opossum 1 (D. albiventeris) from Argentina were fed to 2 KO mice (nos. 4217, 4218) and...