Rate of nitrogen application during the growing season alters the response of container-grown rhododendron and azalea to foliar application of urea in the Autumn

By G. BI1*, C. F. SCAGEL2, L.H. FUCHIGAMI3 and R. P. REGAN4

1Truck Crops Branch Experiment Station, Mississippi State University, Crystal Springs, MS 39059, USA
2USDA-ARS-Horticultural Crops Research Laboratory, Corvallis, OR 97331, USA
3Department of Horticulture, Oregon State University, Corvallis, OR 97330, USA
4North Willamette Research and Extension Center, Oregon State University, Aurora, OR 97002, USA
(e-mail: gb250@msstate.edu)

(Accepted 29 April 2007)

SUMMARY
One-year-old rhododendron (Rhododendron ‘H-1 P.J.M’) and azalea (Rhododendron ‘Cannon’s Double’) plants grown at different nitrogen (N) fertilisation rates were used to assess the influence of soil N applications during the growing season, and foliar applications of urea in the Autumn, on N uptake and accumulation, and plant growth in the following Spring. N uptake efficiency declined linearly during the first growing season with an increasing rate of N fertilisation. For both cultivars, foliar urea application in the Autumn significantly increased plant N content without affecting plant size, regardless of plant N status. Leaves of rhododendron accumulated more N than other plant structures. Plants sprayed with foliar urea in the Autumn had more new growth the following Spring than plants receiving no urea, regardless of whether the plants received fertiliser in the Spring. For azalea, N uptake in the Spring was, in general, not affected by applications of urea during the previous year. For rhododendron, urea application in the Autumn decreased N uptake the following Spring. For both cultivars, increasing N availability during the growing season increased the ratio of above-ground to below-ground dry weight. Our results suggest that combining optimum N applications during the growing season with foliar application of urea in the Autumn can improve N uptake efficiency, increase N storage, and optimise growth in Rhododendron.

Environmental concerns about N run-off from container nursery production have increased the need for improved fertilisation practices that increase the efficiency of fertiliser use and decrease the potential for environmental contamination, without impacting crop productivity or quality (Yeager et al., 1993). Low recovery of N from fertiliser is common with bareroot and container-grown nursery stock (Cabrera, 2003; Catanzaro, 1998; Colangelo and Brand, 2001; Juntunen et al., 2003). Low N uptake efficiency suggests fertilisation practices can be improved by taking into account when plants take up available N most efficiently, and what method of N application is most effective for promoting plant growth (Alt, 1998; Salifu and Timmer, 2003). In woody plants, early growth relies on remobilisation of N reserves before substantial root uptake occurs, which results in a strong relationship between plant growth and N reserves (Cheng et al., 2001; Henry et al., 1992; Millard, 1996).

The method of N application also greatly influences plant quality, through effects on growth and storage of N (Habib, 1993). Liquid application of N, or incorporation of N-containing fertilisers in the substrate, are traditional methods to supply N to plants in container production. With bareroot nursery trees, N application to soil usually has a high risk of losses due to leaching, while foliar N application can have a higher recovery rate (Klein and Weinbaum, 1984; Rosecrance et al., 1998; Shim et al., 1972; Tagliavini et al., 1998). Foliar fertilisation in the Autumn is a common strategy used with fruit tree nursery stock to decrease the potential for N-leaching and problems with hardiness sometimes associated with high soil N in the Autumn, and to improve plant performance the following Spring (Bi et al., 2003; Dong et al., 2003; Rikala et al., 2004).

Deciduous perennial species store N in stems and roots (Millard, 1995) while N storage in evergreen species may also occur in over-wintering leaves (Stephens et al., 2001). Both deciduous and evergreen plant species store N during the Winter and remobilise the stored N for new growth in the following Spring (Grelet et al., 2001; Millard, 1995). For perennial plants, recycled N may contribute a large proportion of the annual nutrient supply required to support new growth and allow plants to make the most efficient use of available nutrients. The ability of foliar N applications to increase N storage, and improve the quality of container-grown ornamental nursery stock, has not been investigated. Comparing the responses of deciduous and evergreen plants to Autumn applications of foliar urea could be useful for optimising N-fertilisation strategies based on plant growth habit.

*Author for correspondence.
The genus *Rhododendron* consists of evergreen and deciduous species and hybrids commonly known as rhododendrons and azaleas. Improper fertilisation of *Rhododendron* during production can decrease stock quality and productivity. Excessive soil fertilisation can damage fine roots near the surface of the soil, and soil fertilisation in late Summer promotes tender growth and slows the development of hardiness, resulting in the death of buds for next year’s flowers or shoots (Reiley, 1992). While high N promotes foliage growth, it can also inhibit flower bud production and increase whitely infestation. In contrast, too little N can cause premature leaf loss (Reiley, 1992). There is little published literature on N-use in nursery production of *Rhododendron* (Witt, 1994). Knowledge of N uptake and use by *Rhododendron* is available from natural ecosystems (Lamaze et al., 2003; Pasche et al., 2002); however, this information may not be applicable to the environmental conditions of container nursery production. The different growth habits (e.g., deciduous vs. evergreen) found within this genus could alter resource-use in plants under different conditions of container nursery production. The different growth habits found within this genus could alter resource-use in plants under different conditions of container nursery production.

Using deciduous and evergreen cultivars of container-grown *Rhododendron*, the objectives of this study were to determine: (i) whether N application rate during the growing season influenced plant response to foliar urea application in the Autumn; and (ii) whether plant N-status in the Winter influenced plant reliance on fertiliser for growth the following Spring.

MATERIALS AND METHODS

Plant culture and treatments

Year 1 (2004): One-year-old plants of *Rhododendron* ‘H-1 PJM’ (rhododendron - evergreen) and *Rhododendron* ‘Cannon’s Double’ (azalea - deciduous) were transplanted into 7.6 l polyethylene pots (1 plant/pot) containing a 2:1:1 (v/v/v) mix of peat moss:pumice:sandy loam soil in late May 2004 and grown outdoors in a lathe house (40% shading) at Corvallis, OR, USA (45° 59’ 04” N; 123° 27’ 22” W). The substrate for this study was chosen to minimise N availability to plants. Thirty plants of each cultivar were assigned at random to one of five groups and fertilised two-times a week for 8 weeks (N05 treatment). At each fertigation, one group of plants received 250 ml of modified Hoagland’s solution containing 10 mM N from NH4NO3 (+U+N and –U+N treatments) and the remaining group received 250 ml of N-free Hoagland’s solution (+U–N and –U–N treatments).

Year 2 (2005): In Spring 2005, after budbreak, half of the plants in each N04 and +U or –U treatment combination were assigned at random to one of two groups and fertilised two-times a week for 8 weeks (N05 treatment). At each fertigation, one group of plants received 250 ml of modified Hoagland’s solution containing 10 mM N from NH4NO3 (+U+N and –U+N treatments) and the remaining group received 250 ml of N-free Hoagland’s solution (+U–N and –U–N treatments).

Measurements

Year 1 (2004): Before transplanting, five plants of each cultivar were selected at random and divided into roots, stems, and leaves. All samples were washed in doubledistilled (DD) water, placed in an –80°C freezer and freeze-dried. The dry weight (DW) of each plant structure was recorded. In December 2004, five randomly selected plants from each N04 and +U or –U treatment combination were harvested and divided into roots, stems, and leaves, and the samples were processed as described above. For both cultivars, stems were further separated by growing season and, for rhododendron, the leaves were also separated by growing season (e.g., 2003 and 2004). Samples for nutrient analyses were analysed as reported previously (Bi et al., 2003).

Total N content was calculated from the sum of the total N in each structure based on the DW and nutrient concentrations of each structure. Uptake of N from fertiliser in the N04 treatment was estimated by subtracting the average N uptake (mg) of plants in the 0 mM N treatment from the N uptake (mg) of plants in the other N04 treatments (i.e., N04 treatments with 5, 10, 15, or 20 mM N). The uptake efficiencies of N from fertiliser in the N04 treatments were calculated as the proportion of the total N applied accounted for by N uptake of plants in the 5, 10, 15, and 20 mM N04 treatments. N uptake from foliar applications of urea in the Autumn was estimated by subtracting the average N content of plants in the –U treatment from the N content of plants in the +U treatment, for each N04 treatment. The amount of N in the different plant structures was used to characterise the primary locations of N use and storage.

Year 2 (2005): Eight weeks after budbreak, plants were harvested as described above. Stems of both cultivars, and rhododendron leaves, were separated by growing season (i.e., 2003, 2004, and 2005). The DW of each plant structure was recorded and samples were analysed for total N as described above. Uptake of N from the Spring fertiliser application (N05 treatment) was estimated by subtracting the average N uptake (mg) by plants in the –N treatment from the N uptake (mg) of plants in the +N treatment for each urea and N04 treatment. The amount of N in different plant structures was used to characterise the primary locations of N remobilisation and use.

Experimental design and statistical analyses

The experiment was set-up in a completely randomised design, with each treatment unit (pot) replicated five times for each N04 treatment (0, 5, 10, 15, or 20 mM N), Autumn foliar urea treatment (+U, –U), N05 treatment (+N, –N), and cultivar (rhododendron, azalea). Biomass and N content data from December 2004 were analysed in a complete factorial design using ANOVA, with cultivar, N04 treatment, and foliar urea treatment as main effects.
N-uptake data from December 2004 were analysed in a complete factorial design using ANOVA, with cultivar and N04 treatment as main effects. Biomass and N content data from June 2005 were analysed in a complete factorial design using ANOVA, with cultivar, N04 treatment, foliar urea treatment, and N05 treatment as main effects. N-uptake data from June 2005 were analysed in a complete factorial design using ANOVA, with cultivar, N04 treatment, and foliar urea treatment as main effects. Means of interactions are presented only when significant ($P \leq 0.05$). Estimates of N-uptake efficiency and biomass, and N partitioning were square-root transformed prior to analysis to correct for unequal variance, and to achieve the best-fit model. Back-transformed least squares means of actual data are reported in Table and Figures. Where indicated by ANOVA, means were separated using Tukey’s Honestly Significant Difference at $P = 0.05$ (THSD$_{0.05}$). Plant response to N04 treatments was evaluated using linear and quadratic polynomial contrasts based on the total amount of N applied to the soil in 2004. The relationships between plant growth in 2005, plant N content in 2004, N uptake from foliar urea in 2004, and N uptake from fertiliser in 2005 were assessed using Spearman R at $P < 0.05$. All analyses were performed using Statistica® (Statsoft, Inc., Tulsa, OK, USA; 1996).

RESULTS AND DISCUSSION

Plant growth

In our study, we used five N fertigation rates to investigate the optimum amount of N required for plant growth during the 2004 growing season. Our results

![Graph A](image1)

A. Winter 2004

![Graph B](image2)

B. Winter 2004

![Graph C](image3)

C. Rhododendron Winter 2004

![Graph D](image4)

D. Azalea Winter 2004

FIG. 1

Influence of nitrogen (N) fertigation rate in 2004 (N04) on total plant biomass and biomass partitioning by two Rhododendron cultivars in Winter 2004. Rhododendron = *Rhododendron* ‘H-1 P.J.M.; Azalea = *Rhododendron* ‘Cannon’s Double’. L and Q = significant linear and quadratic responses to N04; ns = no significant polynomial response to N04. Data points and columns represent means and error bars represent standard errors (Panel A, n = 20; Panel B, n = 50; Panel C and Panel D, n = 10). Data points (Panel A) with a different letter are significantly different (THSD$_{0.05}$, n = 50).
showed that, by December 2004, the biomass of rhododendron was greater than that of azalea (Figure 1A). The total biomass of both cultivars increased with increasing N availability from N04 fertiliser applications, and plant growth (biomass) was greatest for plants that received 10 mM or 15 mM N (Figure 1B), even when plants in the 0 mM N treatment were excluded from the data set. Plants exhibited an asymptotic growth response to increasing N supply (Figure 1B) which was similar to that observed in other species (Barnett and Ormrod, 1985; Cabrera, 2003; Henry et al., 1992) and suggests that the N supply ≥ 10 mM used in our study may be unnecessary and decreases the efficiency of fertiliser use. Application of foliar urea in the Autumn had no influence on plant size in 2004 (P > 0.05) measured as biomass, leaf area, or stem length (data not shown).

The partitioning of biomass between roots, stems, and leaves responded differently to the rate of N fertiliser application, depending on the cultivar. As a result of the differential responses of the top (stems and leaves) and root biomass to N supply, increasing the availability of N increased the ratio of top:root growth for both cultivars (Figure 1C, D), resulting in a relatively small root system to support the large top biomass. Similar results have been reported for other species (Millard and Neilsen, 1989). This response in dry matter partitioning is a mechanism that plants use to optimise available resources (Millard and Neilson, 1989). Under high N availability, a relatively small root system is sufficient to take up enough N and other nutrients. Reduced development of root systems in relation to the top portion of the plant may, however, cause problems after transplanting plants into the landscape. Plants with large top:root ratios can be more susceptible to transplant shock, moisture and temperature stress, and may show poor establishment (Andersen and Bentsen, 2003; Fitter and Hay, 2002; van den Driessche, 1991). Therefore, determining the optimum N rates for growth of Rhododendron is important, not only for improving N-uptake efficiency, but also for aspects of transplant quality.

By June 2005, the total biomass increased with increasing N availability from N04 fertiliser applications (Figure 2A) and the response to N04 fertilisation rate varied between cultivars (i.e., the quadratic response to N04 varied between cultivars; P < 0.05). Rhododendron growth (biomass) was greatest for plants grown at the 10 mM N-fertilisation rate, and growth in azalea was greatest for plants grown at 10 – 20 mM N. For both cultivars, the growth (as total biomass) response to N04 treatments was not influenced by foliar urea or N05 treatment (data not shown).

Applications of foliar urea in Autumn 2004 increased the total plant biomass of both cultivars in June 2005 (Figure 2B). Plants that received foliar urea applications accumulated 14% more total biomass than plants that received no urea. Fertilisation with N in the Spring (N05 treatment) increased the total plant biomass of both cultivars in June 2005, but only when plants received no foliar urea in the Autumn of 2004 (Figure 2B). Plants that received N05 fertilisation accumulated 9% more total biomass than plants that received no N in the Spring.

N content

By December 2004, the total N content of both cultivars increased with increasing N availability from N04 fertiliser applications (Figure 3A). Plants grown at the 10 mM and 20 mM N fertilisation rates contained most N, but the N contents of roots, stems, and leaves responded differently to the rate of N fertilisation, depending on the cultivar. For rhododendron, increasing N availability decreased the proportion of total N in roots and preferentially increased the N content in 2004.
Influence of nitrogen (N) fertigation rate in 2004 (N04) and application of foliar urea in Autumn 2004 on total plant N content and N partitioning by two Rhododendron cultivars in Winter 2004. Rhododendron = Rhododendron ‘H-1 P.J.M’; Azalea = Rhododendron ‘Cannon’s Double’. 3% Urea = plants received foliar urea applications in Autumn 2004. No Urea = no foliar N application in Autumn 2004. L and Q = significant linear and quadratic responses to N04. Data points and columns represent means and error bars represent standard errors (Panel A, n = 20; Panel B, n = 50). Data points (Panel B) with a different letter are significantly different (THSD_{0.05}; B, n = 50). Column segments within a plant structure (Panels D, F) with the same letter are not significantly different (THSD_{0.05}; Panels D, F; n = 25).
leaves (Figure 3C). For azalea, increasing N availability decreased the proportion of total N in roots and 2003 stems, and preferentially increased the N content in 2004 stems (Figure 3E).

Applications of foliar urea in the Autumn increased the total plant N content of both cultivars (Figure 3B). Results from ANOVA of the total N content data from December 2004 indicated no significant interaction between N04 treatment and foliar urea treatment, N contents in roots, stems, and leaves responded differently to foliar urea application, depending on the cultivar. Azalea roots contained more than 50% of total plant N, and foliar urea application increased N contents in stems and roots (data not shown), but had no influence on the partitioning of N between different plant structures (Figure 3F). Nitrogen accumulation in roots and stems of azalea was similar to that described for many other deciduous woody plants (Millard, 1995). Rhododendron leaves contained 40 – 50% of total plant N, and foliar urea application increased the N content in all structures, except 2003 leaves (data not shown), and preferentially increased N partitioning to 2004 stems (Figure 3D).

Evergreen plants have been reported to use alternative methods for storing N, depending on leaf phenology and developmental stage (Karlsson, 1994). In young evergreen Rhododendron ferrugineum L., older leaves stored N, and the N was remobilised slowly throughout the growing season, regardless of current-season N availability (Lamaze et al., 2003). Older needles on coniferous tree seedlings (Millard and Proe, 1993; Nambiar and Fife, 1987) have also been shown to contribute a high proportion of N to current-year above-ground growth. In our study, the foliar application of urea increased the N contents of stems, roots, and 2004 leaves in rhododendron without affecting biomass, indicating that rhododendron utilised not only woody tissues (stems and roots), but also leaves for storing N, and that leaves acted as a primary location for N storage. Nitrogen in 2004 stems and 2004 leaves of rhododendron accounted for approx. 63% of total plant N, suggesting it is important to maintain these structures at the end of the year. If these structures were lost or damaged through shearing or handling, the loss of N reserves could be substantial and potentially negatively influence new plant growth in the following Spring.

For many species, stored N is important for initial growth and development (Henry et al., 1992; Millard, 1996). It has been shown that N storage can be altered either by N fertilisation during the growing season, or foliar urea application after plants have set their terminal buds (Cheng and Xia, 2004). However, plants receiving high amounts of N fertiliser from the soil throughout late Summer and Autumn tend to continue growing late into the season; therefore, late applications or high rates of N fertiliser during this time may delay dormancy, and increase the susceptibility of plants to environmental stresses such as freezing (Bramlage et al., 1980; Millard, 1995). In contrast, decreasing the availability of soil N fertilisation in late Summer or early Autumn, followed by foliar urea application after terminal bud set, can increase N reserves without stimulating growth, and therefore improve early acclimation to environmental stresses. Our results demonstrate that foliar urea applications in the Autumn, after terminal bud set, significantly increased the total plant N content in Rhododendron without affecting plant size, and have the potential to decrease applications of soil N fertiliser to container-grown plants in the Autumn.

By June 2005, the total plant N content of both cultivars increased with increasing N04 fertiliser application rate, and plants grown at 10 mM N contained most N (Figure 4A). The response of total N content to N04 fertiliser rate in June 2005 was not influenced by foliar urea or N05 treatment (data not shown).

Applications of foliar urea in Autumn 2004 increased the total plant N contents of both cultivars in June 2005, and the response to foliar urea was dependent on whether or not plants received N fertilisation in Spring 2005 (Figure 4B,C). Plants that received no N in Spring 2005 were more responsive to foliar urea than plants that received N05 fertilisation (P < 0.05). Urea increased total plant N by 27% when plants received N05 fertilisation, and by 49% when plants received no N05 fertilisation. Fertilization with N in the Spring (N05 treatment) increased the total plant N content of both cultivars in June 2005, and the magnitude of the response varied between cultivars (Figure 4B,C). Azalea was more responsive to N05 fertilisation than rhododendron (P < 0.05). Compared to plants that received no N in Spring 2005, fertilisation with N in the Spring increased the total plant N of rhododendron by 62%, and azalea by 74%.

N-uptake

By December 2004, plants that had received no additional N as N04 fertiliser or foliar urea applications accumulated 60 – 90 mg N from the substrate, or from residual fertiliser in the initial liner substrate. Increasing the N availability increased N uptake from N04 fertiliser applications by 116 – 247 mg, depending on N fertilisation rate and cultivar (Figure 5A). For rhododendron, the uptake of N from N04 fertilization was greatest at the 15 mM N rate and, for azalea, N uptake was similar for plants given 10 – 20 mM N. The estimated N uptake from fertilisation in 2004 may not account for N losses that occur in Rhododendron in the Autumn. Our estimates of N-uptake from fertilization were similar for rhododendron and azalea at the end of 2004. However, the total amount of N taken up from the soil could be underestimated for azalea because some of the N from fertilization may have been lost when the leaves abscised at the end of the year. The commonly cited value for N resorption from senescing leaves is 50% of total leaf N content (Niederholzer et al., 2001). Scagel et al. (unpublished data) found that container-grown azalea (Rhododendron ‘Gibraltar’) reabsorbed approx. 38% of the total N from leaves in the Autumn prior to abscission. Thus the amount of N-uptake for growth of azalea may be greater than our estimated values, due to N losses from leaf abscission.

N-uptake efficiency from the 2004 fertilization declined with increasing N fertiliser rate (Figure 5A). N-uptake efficiency was lowest (~18%) for plants that received 20 mM N, and greatest (~43%) for plants that received 5 mM N. This is consistent with results reported for bearing Citrus trees, where N-uptake efficiency ranged from 14.9% when trees were given 336 g N year\(^{-1}\) tree\(^{-1}\), to 42.2% when trees were given 140 g N year\(^{-1}\) tree\(^{-1}\).
G. Bi, C. F. Scagel, L. H. Fuchigami and R. P. Regan

Reported N-uptake efficiencies vary widely for different crops, and can be affected by many factors including plant age, fertiliser application time, level of applied N, fertiliser type, fertiliser application method (e.g., soil vs. foliar), soil texture, cultural practices (e.g., irrigation), and environmental conditions such as temperature and precipitation (Dong et al., 2001; Neilson et al., 2001; Weinmaum et al., 1984).

Fertiliser rates with the highest N-uptake efficiency in container-grown Rhododendron may not result in the best growth. Under our experimental conditions, plants grown at the lowest N rate (5 mM N) had the highest N-uptake efficiency, but reduced top biomass in comparison to plants grown at the higher N rates. Our previous study, with container-grown 1-year-old Rhododendron, also found that the rate of N-uptake was correlated with the rate of plant growth, and maximum uptake occurred during the period of rapid plant growth in Summer (Bi et al., 2007). These results highlight the importance of selecting N fertiliser rates and application times that optimise both uptake efficiency and plant growth to minimise potential N losses and maintain plant productivity.

N-uptake from foliar applications of urea ranged from 56 – 216 mg, depending on the cultivar and the rate of NO4 fertiliser application (Figure 5B). Rhododendrons that received 10 mM or 15 mM N accumulated the highest amount of N from urea (approx. 213 mg N). Azalea that received no N fertiliser during the growing season accumulated less than 50% of the N from foliar urea compared to plants that received 5 – 20 mM N (approx. 135 mg N).

By June 2005, plants that had received N fertigation in the Spring (N05 treatment) accumulated 130 – 350 mg N (rhododendron), or 250 – 350 mg N (azalea) depending on the rate of N fertigation in 2004 (N04 treatment), and whether or not the plants received foliar urea in the Autumn of 2004 (Figure 5C, D). For both cultivars, foliar urea application in the Autumn increased N uptake from N05 fertigation when plants were grown with 0 mM N from N04 fertigation. For rhododendron, increasing N04 fertigation rate decreased the uptake of N from N05 fertigation when plants received foliar urea, and plants that received foliar urea generally had a lower uptake of N from N05 fertigation compared to plants that received no foliar urea. For azalea, plants grown with 10 – 15 mM N from N04 fertigation had the lowest N uptake from the N05 fertigation, and the application of foliar urea had little influence on N-uptake from N05 fertigation.

Relationships between N content in 2004 and growth in 2005

In both cultivars, total plant biomass, stem biomass, and biomass of 2005 leaves (in 2005) were positively correlated with the N content of all plant structures in the Winter of 2004 (Table I). Root growth in 2005 was positively correlated with leaf N content in 2004 (rhododendron), and 2004 stem N content in the Winter of 2004 (azalea). Growth of 2003 and 2004 leaves in 2005 was positively correlated with 2003 leaf N content in the Winter of 2004. N-uptake from urea was positively correlated with the growth of all plant structures in 2005, while N-uptake from fertigation in the Spring of 2005 was correlated only with 2005 leaf and stem growth.
Foliar applications of urea in the Autumn have been reported to be an effective way to increase N reserves and, consequently, to improve plant growth and development in the following Spring in several plant species (Bi et al., 2003; Cheng and Xia, 2004; O’Kennedy et al., 1975). The level of N reserves in perennial plants has been correlated not only with growth, but also depends on N fertiliser during the following Spring (Bi et al., 2003; Cheng and Xia, 2004; Feigenbaum et al., 1987). In our study, N uptake from fertigation in Spring 2005 was correlated with 2005 leaf and stem growth, but the effect of urea application on the dependence on fertiliser in the Spring varied between cultivars. For azalea, N-uptake in the Spring was not affected by foliar applications of urea during the previous year. This is similar to the response of young ‘Concord’ grapevines (Vitis labruscana Bailey) to urea application (Cheng and Xia, 2004). For rhododendron, N-uptake in the Spring was lower in plants sprayed with foliar urea during the previous year. This is similar to the response of young almond trees [Prunus dulcis (Mill) D. A. Webb] to urea application (Bi et al., 2003).

Compared to azalea, the greater influence of foliar urea on N-uptake by rhododendron in the following Spring may have been due to a combination of factors: (1) foliar urea application may not be as effective at increasing N reserves in azalea compared to rhododendron; (2) the methods of N storage in
rhododendron may be more efficient than those in azalea; and/or (3) new growth in azalea may be more rapid than in rhododendron. Our data showed that foliar urea application caused a greater increase in the N content of rhododendron (164 mg per plant) compared to azalea (123 mg per plant), and this difference could account for differences in the dependence of cultivars on N availability in the Spring. There have been no previous reports on the response of Rhododendron to foliar applications of urea, so the rates and timing of applications used in this study were based on prior research with almond (Bi et al., 2003). It is possible that modifying the rates and timing of urea applications could increase N storage in azalea, and thereby decrease plant dependence on N availability in the Spring.

Our results also indicate that rhododendron and azalea accumulated N in different structures, and that this difference could account for differences in the dependence of the cultivars on N availability in the Spring. For example, in azalea, some of the N absorbed from urea may have been lost when the leaves abscised at the end of the year. In contrast, in rhododendron, leaves that were retained on the plant were the primary location for N. The greater above-ground growth of new structures (leaves and stems; approx. 3 g per plant) in azalea compared to rhododendron could also account for the differences in the dependence of the cultivars on N availability in the Spring. Our previous study, with container-grown 1-year-old Rhododendron, also found that deciduous azalea accumulated biomass at a faster rate than evergreen rhododendron, and the effects of increased availability of soil N on total biomass were observed at least 2 weeks earlier in azalea than in rhododendron (Bi et al., 2007).

In conclusion, our results show that foliar applications of urea to container-grown Rhododendron in the Autumn have the potential to improve N storage during Winter, and plant performance in the following Spring. Foliar urea applications may also decrease plant dependence on N fertiliser in the following Spring for some Rhododendron cultivars; however the influence of foliar urea applications on a wider range of cultivars needs to be assessed, as well as the optimum rates and timing of applications. We also found that the increased N availability to container-grown Rhododendron decreased N-uptake efficiency, and the relationships between N fertiliser rate, N-uptake efficiency, and growth need to be considered when selecting optimum rates for N fertilisation. A combination of optimum soil fertilisation during the growing season, with foliar applications of urea in the Autumn after terminal bud set, could be a useful management strategy to improve N-uptake efficiency, increase N storage, and optimise growth in container-grown Rhododendron.

The authors gratefully acknowledge Jesse Mitchell, Maryanne Resendes, Summer Hendricks, Rachael Huppi, and Ben Ervin for technical assistance, and Monrovia Growers, Dayton, OR, USA for plant material and culture information. Approved for publication as Journal Article No. J-11019 of the Mississippi Agricultural and Forestry Experiment Station, Mississippi State University. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable. This work was funded, in part, by the USDA-ARS-Northwest Center for Nursery Crop Research, and the Oregon State University Agricultural Research Foundation.
REFERENCES

