Research Note

Demographics of Black Vultures in North Carolina

BRADLEY F. BLACKWELL,1 United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, 6100 Columbus Avenue, Sandusky, OH 44870, USA

MICHAEL L. AVERY, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Florida Field Station, 2820 East University Avenue, Gainesville, FL 32641, USA

BRYAN D. WATTS, The Center for Conservation Biology, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA

MARTIN S. LOWNLEY,2 United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, P.O. Box 130, Mosely, VA 23120, USA

ABSTRACT Understanding the contributions of vital rates to species population growth is critical to developing new management protocols. We constructed a model population for black vultures (Coragyps atratus) in North Carolina, USA, based on demographic data from a 14-year study. The model population was similar in stage structure to the reference population, and adult survival was the primary contributor to the annual rate of increase (10.6%). We suggest that the North Carolina black vulture population is experiencing high rates of survival and fertility, potentially breeding at an age younger than previously assumed, and growing rapidly. (JOURNAL OF WILDLIFE MANAGEMENT 71(6):1976–1979; 2007)

DOI: 10.2193/2006-146

KEY WORDS black vulture, Breeding Bird Survey, human–wildlife conflicts, matrix population model, population demographics, species management.

Once considered the most common bird of prey in the western hemisphere (Brown and Amadon 1968), the black vulture (Coragyps atratus) thrives today, with the total population estimated to be 20 million birds (Rich et al. 2004). Long-term population trend data from the Christmas Bird Count and the Breeding Bird Survey (BBS) databases indicate widespread and consistent increases in populations of the black vulture throughout the United States (Sauer et al. 1996, 2005; Avery 2004). Also, United States black vulture populations have expanded their range since the 1940s, extending north into Ohio and northeastern into southern New England (Greider and Wagner 1960, Buckley 1999).

Increases and range expansion by black vulture populations represent a conservation victory for a species recently believed in decline (Rabenold and Decker 1990, Buckley 1999). However, the species’ success also presents new challenges for wildlife managers as black vultures increasingly interact with human activities. Major areas of conflict include livestock depredations (Lowney 1999, Avery and Cummings 2004), property damage (Lowney 1999), and collisions with aircraft (DeVault et al. 2005, Blackwell and Wright 2006).

Some instances of black vulture damage have led to illegal killing (e.g., Holt 1998). However, most problems caused by black vultures are resolved using nonlethal methods (Avery et al. 2002, Seamans 2004). The affected birds are displaced, but they remain part of the local black vulture population, shift to alternate roost sites, and conceivably contribute to new problem situations. Therefore, effective integrated vulture management plans might include population reduction as a component (Humphrey et al. 2004).

An important aspect of any species management program, particularly one that considers managed population reduction in light of possible illegal killing, is an understanding of how a population responds to changes in vital rates. Simulation modeling is frequently used for evaluating responses of wild bird populations to management alternatives (Blackwell et al. 2003, Brook et al. 2003, Watola et al. 2003). The accuracy of simulation models and subsequent population projections are largely dependent upon the extent of demographic data available for the target species, such as age-specific survival and fecundity, and age distribution.

We know, for example, that the black vulture is a long-lived species (potentially >20 yr) exhibiting delayed maturation to breeding status, monogamy, and long-term pair bonds (Buckley 1999). However, age-specific survival data are few. Rabenold (1986) reports survival rates of 0.46–0.93 >2 months postfledging for birds in North Carolina, USA. Unmarked vultures in North Carolina were captured in walk-in funnel traps (Rabenold 1986) and aged, relative to facial morphology, as juvenile, subadult, or adult (Rabenold and Decker 1990). Still, subadult survival rates remain uncertain. Parmalee and Parmalee (1967) recovered 52% of banded individuals within 2 years of banding (age-specific banding data were not reported). Annual adult survival (based on disappearance of marked breeders and from known nest sites and pairings of marked breeders with new mates) ranged from 87.5% (Rabenold 1986) to 90.6% (Rabenold and Decker 1990).

Also, Parker et al. (1995) reported a single known-age black vulture breeding for the first time at age 8 years. Because investigators were not able to document the yearly breeding activities of every bird in the study population, prior breeding by individuals assigned to subadult and adult stages was unknown (P. Parker, University of Missouri-St. Louis, personal communication). Thus, age-at-first-breeding remains unknown for the black vulture.
However, females from Old World vulture species might breed by as early as age 5 years (e.g., cape vulture [Gyps coprotheres; Robertson 1983, 1984]; griffon vulture [Gyps fulvus; Blanco and Martinez 1996]). Relative to Ciconiiformes, in which the black vulture is now grouped (American Ornithologists’ Union 1998), wood storks (Mycteria americana) begin breeding by ages 3 years and 4 years (Coulter et al. 1999), and white storks (Ciconia ciconia) can breed by age 3 years (Tortosa et al. 2002). Moreover, Tortosa et al. (2002) note that human-based food resources contribute to lower breeding ages in white storks.

In addition, the black vulture generally produces 2 eggs (Buckley 1999), with fledgling production varying depending upon nest location (x̄ 0.73 fledglings/nest in rock crevices in PA and MA, USA [Coleman and Fraser 1989]; 1.29 fledglings/nest in NC, generally in abandoned buildings [Rabenold and Decker 1990]). Censuses of winter roosts in North Carolina yielded counts of 580 birds (10 censuses during winter 1979–1980) and 636 birds (9 censuses during Jan 1990), with subadults composing 37% and 18% of the counts, respectively (Rabenold and Decker 1990).

Despite a wealth of published research, longitudinal data for black vulture populations are few; thus, contributions of vital rates, particularly annual variances, to the dynamics of the species’ populations are unclear. Our objectives were to 1) construct a baseline population model for black vultures by referencing values for vital rates derived from a 14-year study in North Carolina (Rabenold 1986, Rabenold and Decker 1990, Parker et al. 1995); 2) evaluate the structure of the model population relative to field estimates; and 3) estimate contributions of matrix elements to rate of population growth.

STUDY AREA

We referenced demographic data on black vultures collected in the Piedmont of central North Carolina, Chatham County, near Silk Hope (35°47’N, 79°22’W), from 1977 through 1990 (see Rabenold 1986, Rabenold and Decker 1990, Parker et al. 1995).

METHODS

We used the aforementioned published data to construct a stage-classified deterministic matrix model comprising females only. Specifically, a stage-classified model differs from an age-classified model in that a stage may comprise individuals differing in age but sharing factors (e.g., breeding experience) known to affect vital rates (Caswell 2001). Because of limited information on the survival of subadult birds, uncertainties as to age-at-first-breeding, and evidence from other vulture species that individuals might, given adequate resources, breed by age 4 years or 5 years, we constructed 2 models. We followed methods for matrix models as described by Caswell (2001) and adhered closely to species-specific applications of deterministic matrix models (e.g., Mertz 1971, Meretsky et al. 2000, Blackwell et al. 2003).

We defined our first model black vulture population as age-specific through stage 7, with stage 8 comprising birds about to turn age 8 years and older. The resulting stage-classified matrix comprised fertility elements for birds about to turn age 1 year (F1) through the adult stage (F7), on the first row. Stage 8 comprised potential breeders. We assumed a prebreeding census (e.g., tracking the first age class from being almost age 1 yr until they are almost age 2 yr) and thus incorporated the effects of first-year mortality into the fertility coefficients (Caswell 2001; see below). Stage-specific survival rates based on data for breeding pairs (Rabenold 1986, Rabenold and Decker 1990) composed subsequent rows of the projection matrix (i.e., forming the diagonal). Here, survival rates for subadults (S1–S7) were unavailable; therefore, we assumed the minimum reported value for S1, the mean of reported values for S2 through S7, and the maximum value reported for the last 2 stages of each matrix (Table 1).

Similarly, we defined our second model population as age-specific through stage 4, with stage 5 comprising birds about to turn age 5 years and older. The resulting stage-classified matrix comprised fertility elements for birds about to turn age 1 year (F1) through the adult stage (F5), on the first row. Here, because of evidence that other vulture species (noted above) breed by age 4 years or 5 years, we defined stage 5 as comprising potential breeders. Again, we assumed a prebreeding census. Also, as in the 8-stage matrix, we referenced survival rates reported for breeding pairs (Rabenold 1986, Rabenold and Decker 1990) to compose rates for subadults. We assumed the minimum reported survival value for S1, the mean of reported values for S2 and S3, and the maximum value reported for the last 2 stages of each matrix (Table 1).

In both models, fertility is related to the age-specific proportion of females breeding (PB), mean number of female young fledged per female (assuming a 1:1 sex ratio; FL), and survival of young from fledging to just before age 1 year (S0) as

\[F_s = P_B F_L S_0 \]
The 8-stage-model black vulture population increased approximately 5.5% annually. Subadults (age 2–7 yr) composed 52.0% of the population, followed by adults (age ≥ 8 yr; 32.6%), and juveniles (15.4%; Table 2). Because of the single breeding stage, reproductive values indicate no senescence. The proportional contribution of adult survival to the model population rate of increase was >6 times that of other stage-specific rates (Table 2).

In contrast, the 5-stage-model black vulture population increased approximately 10.6% annually. Adults (age ≥ 5 yr) composed 43.3% of the population, followed by subadults (age 2–4 yr; 37.3%), and juveniles (19.4%; Table 3). As in the 8-stage model, reproductive values increase through the breeding stage. The proportional contribution of adult survival to the model population rate of increase was >4 times that of other stage-specific rates (Table 3).

DISCUSSION

By limiting the model black vulture population to breeding by age 8 years, we found that the stage composition was not comparable to the North Carolina data (Rabenold and Decker 1990). However, the composition of our 5-stage-model population was similar to indices reported from separate censuses conducted at winter roosts in North Carolina, where subadults composed 18% to 37% of counts (Rabenold and Decker 1990). Also, the annual rate of increase generated by the 5-stage model (10.6%) is similar to the post-DDT era BBS population trend for black vultures in North Carolina (change/yr = 9.9%, P = 0.04, count/route = 0.92 birds, n = 27 routes, 1977–2005; Sauer et al. 2005).

Notably, the life-history parameters used in both models were contemporary to opinions concerning the possible decline of black vulture populations in the Southeast, including populations in North Carolina (Stewart 1984, Rabenold and Decker 1990; see also Buckley 1999). Loss of high-quality nest sites and eggshell thinning were noted as possible regulatory factors in black vulture populations (Jackson 1983, Kiff et al. 1983, Rabenold and Decker 1990). However, we found that the proportional contribution to population growth rate by adult survival, in both models, far exceeded the contribution of fertility. We suggest, therefore, that the black vulture population in North Carolina, and likely populations elsewhere, is experiencing high rates of survival and fertility, potentially breeding at an age younger than previously assumed, and growing rapidly.

MANAGEMENT IMPLICATIONS

New field efforts should be undertaken to quantify population demographic parameters for black vultures, particularly age structure and age-at-first-breeding, and to determine seasonal movement patterns to quantify the effect of immigration on local population density. We encourage the use of this model, and derivations based on new data, by agencies seeking to understand and accurately project trends...
in local and regional black vulture populations relative to potential management scenarios.

ACKNOWLEDGMENTS

We greatly appreciate the helpful insights of J. Coleman and P. Parker relative to the data used in model construction, and their reviews of the manuscript. We also thank R. Beason, P. Kocovsky, and T. Seaman, for their reviews of earlier drafts of this manuscript. E. Poggiali provided logistical support.

LITERATURE CITED

