Functionality of chemically modified wild-type, partial waxy and waxy starches from tetraploid wheats

L.E. Hansen a, D.S. Jackson b, R.L. Wehling b, R.A. Graybosch a, *

a USDA-ARS, 314 Biochemistry Hall, University of Nebraska-Lincoln, East Campus, Lincoln, NE 68583, USA
b Department of Food Science and Technology, University of Nebraska-Lincoln, NE 68583-0919, USA

A R T I C L E I N F O
Article history:
Received 11 September 2009
Received in revised form
3 February 2010
Accepted 10 February 2010

Keywords:
Tetraploid wheat
Starch
Functional properties
Amylose
Waxy alleles
Cross-linking
Substitution
Modified starches

A B S T R A C T
Partial waxy (reduced-amylose) and fully waxy (amylose-free) tetraploid durum wheats (Triticum turgidum L. var. durum) were developed by introgression of null alleles at the Wx-A1 and Wx-B1 loci from common hexaploid wheat (Triticum aestivum L.). Purified starches were obtained from each genotype, and chemically modified by: 1) cross-linking with phosphorus oxychloride, 2) substitution with propylene oxide, and 3) sequential cross-linking with phosphorus oxychloride followed by substitution with propylene oxide. Functional properties were compared to blends of waxy and wild-type durum starches of known amylose contents. Significant differences in functionality were observed amongst the genotypes and blends after each modification. Waxy (0% amylose) and wild-type (30% amylose) typically were at the extremes of the observed ranges of functional properties. In general, the functional properties of the chemically modified starches were dependent upon amylose content. Starches from Wx-B1 null lines (24% amylose), were an exception. After substitution, such starches had the significantly highest value for RVA final viscosity, and generally performed in a manner similar to starch blends of 12–18% amylose.

Published by Elsevier Ltd.

1. Introduction

Wild-type durum wheat (Triticum turgidum L. var. durum) produces two granule-bound – starch-synthase (GBSS, E.C. 2.4.1.242) isoforms of apparent molecular weight approximating 60 kDa (Wx-A1 ~ 59.6 and Wx-B1 ~ 56.9 kDa) (Yamamori et al., 1995). Wx-A1 and Wx-B1 null lines each produce only one of the GBSS isoforms, and waxy genotypes produce no GBSS.

Although development of waxy and partial waxy durum wheat (Delwiche et al., 2006; Vignaux et al., 2004) has provided a novel starch for food or industrial use, functionalities may be enhanced by altering the granule characteristics with chemical modifications (BeMiller and Whistler, 1996; Patil and Meschi, 2008; Thomas and Atwell, 1999). In general, waxy starches are not directly used in foods; they are first stabilized via chemical modification (Reddy and Seib, 2000). When waxy starch is cross-linked, the effects include retention of gel clarity during refrigeration, viscosity retention in acidic foods, increased pasting temperature, retention of granule structure, reduced syneresis, reduced crumb staling, resistance to gel separation during freeze–thaw cycling, reduced gel firmness, increased gel adhesion, and other functional variations. These changes are due to increased water retention and polymer chain mobility restriction which slows the development of retrogradation, and depends upon the degree of cross-linkage (BeMiller and Whistler, 1996; Patil and Meschi, 2008; Thomas and Atwell, 1999). Cross-linked starch applications include gum gel confections, hard confection coating, clear decorative gels, fruit glaze, canned sauces, canned gravies, uniform heating of canned red beans in a retort, refrigerated and frozen desserts, frozen fruit pie, frozen dinner sauces and gravies, meal coatings, retarded staling of baked products, retained integrity of frozen bread products, pharmaceutical and edible films (BeMiller and Whistler, 1996; Patil and Meschi, 2008; Thomas and Atwell, 1999). Digestion resistant starch (R54), also produced by chemical cross-linking (Shin et al., 2004; Woo and Seib, 2002), may have application as a form of dietary fiber.

Previous investigations have examined the characteristics of chemically modified waxy or partial waxy hexaploid wheat (Triticum aestivum L.) starches. Reddy and Seib (1999) compared the response of starches from two partial waxy wheat cultivars to wild-type wheats. The range of amylose content variation in the starches used, however, was slight. Reddy and Seib (2000) compared waxy hexaploid wheat to waxy maize (Zea mays L) starch after chemical modification. Kiribuchi-Otobe et al. (2006) cross-linked two waxy...
hexaploid wheat lines carrying different mutant alleles at the Wx-D1 locus. However, no systematic comparison of the effects of durum wheat Wx genotypes on modified starch properties has been reported. The intent of the present investigation, therefore, was to determine whether different Wx genotypes of durum (tetraploid) wheat respond differently to chemical modification, and, if so, whether they may be used to produce starches with different functional properties. Additionally, the effects of both intra-granular amylose content variation, determined by genotype, and inter-granular amylose variation, created by blending of waxy and wild-type starches, were investigated.

2. Experimental

2.1. Wheat and starch samples

Sets of wild-type, partial waxy (Wx-A1 null or Wx-B1 null), and waxy (Wx-A1 and Wx-B1 double-null) durum wheat lines were developed in 4 genetic backgrounds (Delwiche et al., 2006). Bulked segregant analysis (Quarrie et al., 1999) was used to evaluate the effects of the tetraploid Wx loci genotypes. Samples were composited by genotype across genetic backgrounds. Separate composite samples were produced for each crop year. Additional details on plant culture, milling and starch extraction have been described previously (Hansen et al., in press). Percent amylose content of the isolated starches was determined by the dual wavelength amylose assay (Zhu et al., 2007). Waxy and wild-type starches were blended by weight to approximately 30% (wild-type), 24%, 18%, 12%, 6%, and 0% (waxy) amylose retaining crop year identity.

2.2. Chemical modifications

All native starches were modified by cross-linking with phosphorus oxychloride (Reddy and Seib, 2000; Woo and Seib, 2002) at an addition amount of 0.016% phosphorus oxychloride/starch (by weight). Samples were randomized, and reactions conducted in triplicate using 10 g dw/starch samples. Starch P content of both native and cross-linked samples was determined by an independent commercial laboratory (Medallion Labs, Minneapolis, MN) and reported as ppm (dw). Substitution was accomplished using 4.15% (of starch weight) propylene oxide (Johnson, 1969; Kesler and Hjermsstad, 1964; Leegwater and Luten, 1971). The degree of substitution for hydroxypropylation was determined by colorimetry (Johnson, 1969). Finally, all native starches were each modified sequentially by phosphorus oxychloride cross-linking followed by propylene oxide substitution on three randomly selected samples (Reddy and Seib, 2000; Woo and Seib, 2002). All reactions again were conducted in triplicate.

2.3. Functional and physical properties

Rapid Visco Analysis (RVA) utilized the Series 4 Rapid Visco Analyzer (Newport Scientific Pty. Ltd, Warriewood, NSW, Australia) with viscosity expressed in centipoise (cP), time in minutes (min) and temperature in degrees Celsius (°C). Standard Protocol 1 found in Applications: 6.1 “General pasting method using the Rapid Visco Analyzer”, and modified in 7.9 “RVA Cross-linked and Substituted Starch Method” was used on all cross-linked, substituted and sequentially modified starches (Newport Scientific, 1995). Each product from each of the three reactions for each of the chemical modifications of the native starch (genotypes and % amylose blends) was pasted separately, again independently for each crop year.

Modified starch gel textural responses were observed with a TA. Xti2i Texture Analyzer (Texture Technologies Corp., Scarsdale, NY, USA). The force × time curves were integrated for gel strength = Area1 and adhesion = Area2.

The temperatures and heat flow into the starch and water system during loss of crystallinity for all cross-linked, substituted and sequentially modified starches were performed using Differential Scanning Calorimetry (DSC) (Pedersen et al., 2007; Ratnayake and Jackson, 2006).

2.4. Statistical analyses

Statistical analyses were performed using PC-SAS (SAS Institute, Cary, NC). Analysis of variance was used to evaluate variation due to the main effects crop year, type (defined as genotypes, or inter-granular blends of waxy with wild-type) and year by type interactions for each physical property within each chemical modification treatment. Mean responses were compared by computation of least significant differences (p = 0.05).

3. Results and discussion

3.1. Chemical properties and modifications

Mean amylose contents (Hansen et al., in press) of the four genotypes were: 27.90% (Wx-A1 null), 24.25% (Wx-B1 null), 29.85% (wild-type) and 0.00% (waxy). The dual wavelength method recorded no measurable amylose content in the waxy starch. There was a significant difference observed for mean amylose content of the three remaining genotypes, with that of the Wx-B1 null samples being significantly lower than that of the Wx-A1 null and wild-type samples. The latter two samples did not differ significantly from each other.

Respective mean P content of the waxy, wild-type Wx-A1 and Wx-B1 null lines native starches was 350, 647, 673 and 767 ppm (dw). Waxy, wild-type, Wx-A1 and Wx-B1 cross-linked starches respectively averaged 84, 301, 261 and 268 ppm P. The sequentially modified waxy, wild-type, Wx-A1 null and Wx-B1 null starches respectively averaged 99, 110, 100 and 297 ppm P. Thus, P content of all starches fell well within the legal limits of 0.5% (Stephen et al., 2006). As most native starch P content is in the form of phospholipid (Soulaka and Morrison, 2006), the lower P content of the modified starches likely arose from phospholipid leaching during reactions. Hexaploid wheat starch generally is reported to have a P content in the range of 500–600 ppm (Swinkels, 1985; Kasemsuwan and Jane, 1996; Raeker et al., 1998; Franco et al., 2002). Average durum wheat cultivar P contents were reported as 633 ppm (Soulaka and Morrison, 2006). Waxy and partial waxy hexaploid wheat starch P content generally is lower, and with reported values of less than 200 ppm for waxy, and less than 500 ppm for partial waxy samples (Bertolini et al., 2003; Yasui et al., 1996). The partial waxy samples in the present study showed no reduction in P content relative to wild-type.

The mean molar substitution value for the hydroxypropylated starches was 0.040, with a mean standard deviation of 0.01, and no significant differences.

3.2. Functionality

ANOVA (not shown) detected no significant effects due to crop year or crop year × type interaction for RVA properties of cross-linked, substituted, or sequentially modified starches. The degree of cross-linking achieved in this study drastically diminished RVA viscosities of wild-type and partial waxy samples (Fig. 1, Table 1). Cross-linking of waxy starch, however, produced a product with
Fig. 1. RVA pasting curves for cross-linked, substituted and sequentially modified starches and starch blends from durum wheats. Curves represent mean responses of samples from 2003 to 2004 harvest years.
enhanced and stable RVA viscosities. The peak and final viscosities of cross-linked waxy starch were markedly greater than those of the remaining three genotypes. Peak and final viscosities of the blended cross-linked samples fell between the waxy and wild-type samples, and generally were proportional to amylose content. The cross-linking level employed in this study was within the range used by Reddy and Seib (2000) as typical of industrial applications.

Peak viscosity of waxy substituted starch also was statistically greater than that of all other samples (Table 2, Fig. 1), with the exception of the 6% amylose blend. Peak viscosities of substituted starches generally were proportional to amylose content, with one exception. Peak viscosity of the Wx-B1 null substituted starch was significantly greater than that of the other genotypes, and nearly identical to that of the 18% blend, even though the Wx-B1 null sample had an amylose content of 24.25%. Final RVA viscosity of the Wx-B1 null substituted starch was statistically greater than that of all other genotypes and blends. Final viscosities of substituted starches of all other genotypes and blends did not differ from each other. The Wx-B1 null native starch also displayed functional properties not in proportion to its amylose content (Hansen et al., in press). Peak times of all samples did not vary, with the exception that the waxy sample displayed a significantly shorter value; a similar observation was made for native waxy starch (Hansen et al., in press).

Relative to cross-linking alone, sequential modification increased the viscosity of all samples (Fig. 1, Table 3). Both peak and final viscosities of the waxy sequentially modified starch were markedly elevated and statistically greater than all other samples. Peak time of the waxy sample was also significantly lower than that of all other samples. Again, there was an amylose-dependent trend evident amongst the remaining samples and blends, with the exception once again of the Wx-B1 null sample. Peak and final viscosities of this sample did not differ from the 12% amylose blend. The observed final viscosities of the sequentially modified starches indicate food processors could achieve any desired response simply via mechanical blending of waxy and wild-type wheats. Reddy and Seib (1999) did not observe amylose-dependent responses when starches from two partial waxy wheats were compared to one wild-type sample. However, they used starches with only a narrow (23%–28%) range of amylose content variation, the samples were not derived from common genetic backgrounds, and were not from wheats grown in the same environment. Thus, many confounding effects, removed in the present study, may have influenced their results.

3.3. Texture

No significant crop year or interactions were observed for gel texture measurements. Cross-linked starches showed few significant differences from each other (Table 4). The Wx-A1 null sample produced a gel with an Area1 (gel strength) value significantly greater than that of the Wx-B1 null, but all other cross-linked starches did not differ from each other. Area2 (adhesion) values of cross-linked starches showed no significant differences.

After substitution or sequential modification, starches showed nearly identical responses. Significant differences were observed between waxy and wild-type samples for both Area1 and Area2, with wild-type displaying the greater values (Table 4). Area1 values for both modifications of all other samples showed amylose-dependent absolute values, but rarely were statistically significant differences observed. Area2 values differed only between waxy and all other samples. Wild-type substitution and sequentially modified gels were stronger and displayed less adhesion than waxy samples.

Table 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ViscF<sub>(cp)</sub></th>
<th>ViscP<sub>(cp)</sub></th>
<th>Brakdn<sub>(cp)</sub></th>
<th>ViscF<sub>(cp)</sub></th>
<th>Setbak<sub>(cp)</sub></th>
<th>PkTime (min)</th>
<th>TPaste (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>2035 899 34</td>
<td>1194 198 6.5</td>
<td>52.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>690 632 58</td>
<td>693 61 6.8</td>
<td>50.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>374 282 93</td>
<td>329 48 6.3</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>234 113 122</td>
<td>139 27 6.1</td>
<td>52.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>227 71 156</td>
<td>91 20 6.5</td>
<td>51.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>134 48 86</td>
<td>60 13 6.1</td>
<td>53.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>17 74 39 35</td>
<td>55 17 6.6</td>
<td>52.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>1834 1400 434</td>
<td>1960 56 50.6</td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>575 447 127</td>
<td>565 118 6.3</td>
<td>51.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>571 287 315</td>
<td>405 140 0.7</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Wx = waxy genotype or 0% amylose, WT = wild-type genotype or 30% amylose, AN = Wx-A1 null partial waxy genotype, BN = Wx-B1 null partial waxy genotype, 6 = 6% amylose, 12 = 12% amylose, 18 = 18% amylose, 24 = 24% amylose.
- ViscF_(cp) = peak viscosity; ViscP_(cp) = trough or hot paste viscosity; Brakdn_(cp) = breakdown or the difference between peak and hot paste viscosities; ViscF_(cp) = final or cold paste viscosity; Setbak_(cp) = setting time from start of the run to peak viscosity; PkTime = time from start of the run to peak viscosity; TPaste = pasting temperature.

Table 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ViscF<sub>(cp)</sub></th>
<th>ViscP<sub>(cp)</sub></th>
<th>Brakdn<sub>(cp)</sub></th>
<th>ViscF<sub>(cp)</sub></th>
<th>Setbak<sub>(cp)</sub></th>
<th>PkTime (min)</th>
<th>TPaste (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>2035 899 34</td>
<td>1194 198 6.5</td>
<td>52.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>690 632 58</td>
<td>693 61 6.8</td>
<td>50.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>374 282 93</td>
<td>329 48 6.3</td>
<td>51.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>234 113 122</td>
<td>139 27 6.1</td>
<td>52.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>227 71 156</td>
<td>91 20 6.5</td>
<td>51.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>134 48 86</td>
<td>60 13 6.1</td>
<td>53.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>17 74 39 35</td>
<td>55 17 6.6</td>
<td>52.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WX</td>
<td>1834 1400 434</td>
<td>1960 56 50.6</td>
<td>50.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>575 447 127</td>
<td>565 118 6.3</td>
<td>51.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>571 287 315</td>
<td>405 140 0.7</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Wx = waxy genotype or 0% amylose, WT = wild-type genotype or 30% amylose, AN = Wx-A1 null partial waxy genotype, BN = Wx-B1 null partial waxy genotype, 6 = 6% amylose, 12 = 12% amylose, 18 = 18% amylose, 24 = 24% amylose.
- ViscF_(cp) = peak viscosity; ViscP_(cp) = trough or hot paste viscosity; Brakdn_(cp) = breakdown or the difference between peak and hot paste viscosities; ViscF_(cp) = final or cold paste viscosity; Setbak_(cp) = setting time from start of the run to peak viscosity; PkTime = time from start of the run to peak viscosity; TPaste = pasting temperature.
3.4. Thermal transition

Across the three types of chemical modification, similar responses were observed. DSC peak temperatures were greatest in the waxy samples, as was ΔH (enthalpy) (Table 5). The two partial waxy samples were similar to wild-type, and the blended samples displayed amylose-dependent results. This suggests that even after waxy samples were similar to wild-type, and the blended samples composed entirely of 100% amylopectin, required the highest thermal transitions was the degree of crystallinity of the sample, pasting properties. Altering amylose content, other than at the amylose to obtain desired end-results, especially in terms of starch behaviour in a concentration pre-
behaved in amylose content-dependent fashions. Waxy and wild-
type starches purified from tetraploid wheat grown in 2003 and 2004.

Wild-type samples were “cleaner releasing”, as indicated by the more negative values for Area2.

Table 5

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cross-linked</th>
<th>Substituted</th>
<th>Sequentially modified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area1b</td>
<td>Area2 (Ns)</td>
<td>Area1</td>
</tr>
<tr>
<td>6</td>
<td>1.02 -0.49</td>
<td>0.70 -0.31</td>
<td>1.60 -0.66</td>
</tr>
<tr>
<td>12</td>
<td>1.32 -0.51</td>
<td>1.06 -0.31</td>
<td>2.32 -0.36</td>
</tr>
<tr>
<td>18</td>
<td>1.53 -0.42</td>
<td>2.45 -0.21</td>
<td>4.27 -0.18</td>
</tr>
<tr>
<td>24</td>
<td>1.52 -0.39</td>
<td>2.97 -0.22</td>
<td>5.46 -0.18</td>
</tr>
<tr>
<td>AN</td>
<td>2.07 -0.38</td>
<td>2.63 -0.33</td>
<td>5.56 -0.06</td>
</tr>
<tr>
<td>BN</td>
<td>0.95 -0.37</td>
<td>2.72 -0.11</td>
<td>4.68 0.95</td>
</tr>
<tr>
<td>WT</td>
<td>1.81 -0.41</td>
<td>3.45 -0.66</td>
<td>9.77 0.49</td>
</tr>
<tr>
<td>Wx</td>
<td>1.36 -0.41</td>
<td>0.95 -0.17</td>
<td>2.60 -0.60</td>
</tr>
<tr>
<td>Mean</td>
<td>1.45 -0.42</td>
<td>2.10 -0.01</td>
<td>4.58 -0.03</td>
</tr>
<tr>
<td>lsd</td>
<td>0.90 n.s.</td>
<td>1.30 -0.31</td>
<td>2.24 0.86</td>
</tr>
</tbody>
</table>

References

