Comparison of Weep and Carcass Rinses for Recovery of Campylobacter from Retail Broiler Carcasses

MICHAEL T. MUSGROVE,1* NELSON A. COX,2 MARK E. BERRANG,1 AND MARK A. HARRISON3

1Poultry Processing and Meat Quality Research Unit and 2Poultry Microbiological Safety Research Unit, Agricultural Research Service–U.S. Department of Agriculture, Richard B. Russell Agricultural Research Center, Athens, Georgia 30605; and 3Department of Food Science and Technology, University of Georgia, Athens, Georgia 30602, USA

ABSTRACT

Campylobacter is frequently recovered from broiler carcasses. Carcass rinsing is a commonly used procedure for isolating Campylobacter from poultry. A viscous, or weep, exudes from broiler carcasses that have been packaged. This fluid can contain bacteria that were attached to the carcass and represents a potential means of detecting Campylobacter-contaminated carcasses through cultural analysis. Experiments were conducted to compare the efficacy of a weep sampling method with that of a carcass rinse method. For both trials, retail carcasses were purchased. Packages were opened, and 0.1-ml aliquots of weep fluid from the retail packages were plated onto Campy-cefex agar. Carcasses were removed from the package and rinsed in 100 ml of sterile water. Next, 0.1-ml aliquots of the rinsate were plated onto Campy-cefex agar and incubated. In a second experiment, samples were both directly plated and enriched in Bolton enrichment broth. In the first experiment, 35 of 60 carcass rinses tested positive for Campylobacter, while 29 of 60 weep samples yielded Campylobacter isolates with levels of 1.0 and 1.1 log CFU/ml, respectively. In the second experiment, Campylobacter was recovered from 9 of 40 rinse samples and from 13 of 40 weep samples by direct plating, while the organism was recovered from 28 of 40 rinses samples and from 23 of 40 carcass samples by enrichment. There was no significant difference between the two methods with respect to Campylobacter prevalence as determined by the chi-square test. Campylobacter levels recovered by both methods averaged 0.9 log CFU/ml. The sampling of weep fluid was a simple, effective means of detecting this important human enteropathogen on broiler carcasses.
TABLE 1. Prevalence rates for and levels of Campylobacter as determined by plating carcass weep fluid and carcass rinsate onto Campy-cefex agar

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Weep (log_{10} CFU/ml)</th>
<th>Rinse (log_{10} CFU/ml)</th>
<th>Prevalence for sample typea</th>
<th>Either type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0/10</td>
<td>0/10</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.8</td>
<td>6/10</td>
<td>6/10</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>1.4</td>
<td>8/10</td>
<td>9/10</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>1.0</td>
<td>7/10</td>
<td>9/10</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>1.1</td>
<td>5/10</td>
<td>7/10</td>
</tr>
<tr>
<td>6</td>
<td>0.8</td>
<td>0.8</td>
<td>3/10</td>
<td>4/10</td>
</tr>
<tr>
<td>Total</td>
<td>1.1</td>
<td>1.0</td>
<td>29/60</td>
<td>35/60</td>
</tr>
</tbody>
</table>

a Number of samples positive/number of samples tested.

Campylobacter colonies. Presumptive colonies are flat or raised, round, entire, cream or tan colored, and smooth or glistening and are translucent when the petri plate is held in front of a light source. Representative presumptive colonies were confirmed by the observation of spiral cells and rapid, darting motility in wet mount preparations with the use of phase-contrast microscopy. Counts from plates with confirmed Campylobacter colonies were converted to log_{10} values and recorded. Prevalence rates for each sample type and method were analyzed with a chi-square test for independence (16).

For the second experiment, 40 retail broiler carcasses were sampled in four replicate trials as described for the first experiment. However, aliquots of rinsate and weep were enriched in Bolton broth (Oxoid) in addition to being directly plated as described above. A 1-ml aliquot of sample (rinse or weep) was added to 100 ml of Bolton enrichment broth in a Ziploc bag. Enrichments were incubated at 42°C for 36 to 48 h in a microaerobic atmosphere before being plated onto Campy-cefex agar. After a sample was evaluated, confirmed, and analyzed as described above, the result for that sample (positive or negative for Campylobacter) was recorded.

RESULTS

Prevalence rates and levels (log_{10} CFU/ml of weep or rinse) of Campylobacter determined by plating on Campy-cefex agar in the first experiment are reported in Table 1. Forty-eight percent (29 of 60) of the directly plated weep samples tested positive for Campylobacter, compared with 58% (35 of 60) of the rinse samples; the difference was not significant by the chi-square test for independence (16).

Analysis of either sample type revealed that 65% of the retail samples were Campylobacter positive. Average levels for each sample type differed by only 0.1 log_{10} CFU/ml of sample.

Results for the second experiment are reported in Tables 2 and 3. Thirty-two percent of the directly plated weep samples tested positive for Campylobacter, compared with only 22% of the directly plated rinse samples (Table 2); the difference was not significant by the chi-square test for independence (16). Average population levels for each sample type were identical (Table 3). After enrichment, Campylobacter prevalence increased to 57 and 70% for weep and rinse samples, respectively. When either method (direct plating or enrichment) or sample type (weep or rinse) was considered, 90% (36/40) of the samples tested positive for the organism.

DISCUSSION

Since the genus was first proposed in 1967, Campylobacter has been established as one of the most significant bacterial foodborne pathogens in developed countries worldwide. A risk factor for campylobacteriosis is the consumption of undercooked poultry (4, 6). Campylobacter is frequently isolated from poultry and poultry products, with >90% of samples testing positive for the organism in some studies (9, 11, 12, 15, 17).

While cultural methods for the analysis of foods have improved over the years, the development of such methods...
continues. There are a number of approaches that can be taken to isolate Campylobacter from poultry products. These approaches include direct plating and enrichment of neck skin, swabs, and rinses and even incubation of the entire product in enrichment broth (1, 2, 5, 7–9, 12, 14, 15, 17). However, carcass rinses are most often used by regulatory agencies. The USDA-FSIS employs a standard method that involves the rinsing of carcasses with 200 ml of dilute buffered peptone water (13). However, Campylobacter can be consistently recovered from carcasses by rinsing with as little as 100 ml of sterile water (5, 18).

Previously published literature indicates that bacteria can be harvested from the “drip” or “exuded blood and water” of packaged poultry carcasses or parts (10). Clark and Bueschkens (3) successfully isolated Campylobacter from this fluid. The present study was undertaken to determine whether weep fluid from retail broiler carcasses would yield Campylobacter as consistently as carcass rinse sampling did.

While the direct plating of fresh carcass rinses often yields prevalence rates of >90%, lower prevalence rates are frequently reported for retail products (2, 17). In the present study, prevalence rates for directly plated retail samples, whether these samples were weep or carcass rinse samples, were similar to those previously reported. Rogol et al. (14) detected Campylobacter in 37% of 70 chicken meat samples, whereas Stern and Line (17) found only 20% of retail carcasses to be Campylobacter positive.

No other reports of Campylobacter levels in weep samples were noted in searches of published literature. Levels reported for both weep and carcass rinse samples were similar to those previously reported for carcass rinses. Line et al. (9) reported Campylobacter levels of 2.2 log CFU/ml of rinse for freshly processed broilers. Stern and Robach (18) reported Campylobacter levels of slightly more than 1.0 log CFU/ml of rinse from fresh carcasses.

The enrichment of both weep and carcass rinse samples resulted in increased Campylobacter detection. Aquino et al. (2) reported a decrease in the detection of Campylobacter in fresh carcasses with enrichment (from 95 to 48%), but Stern and Line (17) reported a Campylobacter recovery rate of 95% with enrichment, compared with 20% by direct plating. Smeltzer (15) reported an increase in detection (from 84 to 94%) with enrichment. In the present study, maximum detection was achieved when both direct plating and enrichment of both sample types were considered. Similar trends have previously been reported. Jorgensen et al. (7) and Kramer et al. (8) found >80% of poultry samples to be Campylobacter positive when a variety of methods were used. No single method or medium type developed to date is entirely effective in recovering this fastidious organism from poultry meat. This point is demonstrated by the results of the present study, in which a number of carcasses tested positive for Campylobacter by only one of the methods (direct plating or enrichment) or for only one of the sample types (weep or carcass rinse).

Weep samples analyzed in this study were obtained more easily and quickly than rinse samples. Campylobacter levels obtained for both sample types were nearly identical. There were no statistical differences between recovery rates for the two sample types whether direct plating or enrichment was employed. The use of weep samples for the detection and enumeration of Campylobacter may be a suitable alternative to the use of carcass rinse samples, particularly when materials or technical help are in short supply.

ACKNOWLEDGMENTS

The authors appreciate the excellent technical assistance of Debbie Posey, Sherry Turner, and Susan Mize.

REFERENCES

12. Musgrove, M. T., N. J. Stern, and R. Johnson. 1996. An effective procedure for the detection of Campylobacter spp. on broiler car-

TABLE 3. Levels of Campylobacter as determined by directly plating carcass weep fluid and carcass rinsate onto Campy-cex agar (n = 40)

<table>
<thead>
<tr>
<th>Replicate</th>
<th>Weep</th>
<th>Rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Average</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

