Climate drivers of regionally synchronous fires in the inland Northwest (1651–1900)

Emily K. Heyerdahl, Donald McKenzie, Lori D. Daniels, Amy E. Hess, Jeremy S. Littell and Nathan J. Mantua

Abstract. We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon, Washington and southern British Columbia). Years with widespread fires (35 years with fire at 7 to 11 sites) had warm spring–summers and warm-dry summers, whereas years with no fires at any site (18 years) had the opposite conditions. Spring climate likely affected the length of the fire season via the effects of snowmelt on soil and fuel moisture, whereas summer climate influenced fuel moisture during the fire season. Climate in prior years was not a significant driver of regionally synchronous surface fires, likely because fuels were generally sufficient for the ignition and spread of such fires in these forests. Fires occurred significantly more often than expected by chance when the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were both warm phase and less often when they were both cool phase. Interactions between large-scale climate patterns influenced fire synchrony in the inland Northwest because phases of ENSO and PDO were associated with changes in the frequency of warm-dry vs. cool-wet spring–summer climate.

Introduction
Climate was a strong driver of 20th-century fire synchrony in the interior west of North America (Gedalof et al. 2005; Collins et al. 2006; Littell 2006; Westerling et al. 2006; Morgan et al. in press). Summer climate has long been recognised as important to wildfire activity but fire-scar reconstructions and some recent studies of modern fires demonstrate that climate during the spring preceding the fire season can also be important. For example, in the western US, the frequency of large fires was relatively high during years with warm summers and springs, which are also years of relatively early snowmelt, low summertime soil and fuel moisture, and hence longer fire seasons (Westerling et al. 2006). Spring climate in the inland Northwest is influenced by large-scale climate patterns such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Tropical El Niño events favour anomalously dry and warm winters and springs in the inland Northwest, producing anomalously shallow snow packs, whereas La Niña events lead to anomalously deep snow packs (Redmond and Koch 1991; Moore and McKendry 1996; Gershunov et al. 1999; Mantua 2002). The warm phase of the PDO affects the inland Northwest in a manner similar to El Niño events. Furthermore, the effects of El Niños are amplified during warm phases of the PDO whereas the effects of La Niñas are amplified during cool phases of the PDO and vice versa (Gershunov et al. 1999; McCabe and Dettinger 1999). Although the occurrence of modern fires across the Pacific Northwest appears to be weakly synchronised by variation in the PDO (Gedalof et al. 2005) and modelling studies suggest that the combined effects of ENSO and PDO may lead to large annual area burned in the inland Northwest (Westerling and Swetnam 2003), it is difficult to confirm these relationships during the two 20th-century phase reversals in PDO. Paleorecords can provide a longer perspective, potentially yielding additional insight into the influence of climate drivers on variation in fire synchrony during periods that pre-date the era of widespread fire exclusion, industrial logging, and consequent changes in forest structure.
Climate drivers of historical fires in the inland Northwest

Int. J. Wildland Fire

Over the past decade, a network of crossdated surface-fire chronologies has been developed from fire scars across the inland Northwest, with 15 sites sampled over 7 degrees of latitude in the interiors of Oregon, Washington and British Columbia (Everett et al. 2000; Heyerdahl et al. 2001, 2007; Daniels and Watson 2003; Hessl et al. 2004; Wright and Agee 2004). The climate drivers of fire have been analysed for many of these sites individually or in small groups of sites (Heyerdahl et al. 2002; Daniels and Watson 2003; Hessl et al. 2004; Wright and Agee 2004). Large and/or widespread fires occurred during significantly dry years, some of which were El Niño years. The role of PDO was investigated only in eastern Washington, where its role in driving fire was ambiguous. However, climate drivers of fire emerge most strongly when fire chronologies are examined across broad areas (e.g. Kitzberger et al. 2007), thus the lack of strong relationships between fire and ENSO or PDO at individual sites may not reflect the role of these large-scale climate parameters in synchronising fire across the region. Furthermore, none of these studies explored the role of temperature or interactions of ENSO and PDO in driving fire.

Our objective was to infer the climate drivers of regionally synchronous surface fires (1651–1900) in the inland Northwest in the era pre-dating widespread fire exclusion and intensive forestry activities. We explored relationships between existing annually accurate fire-scar reconstructions of fire history and independent tree-ring reconstructions of both regional climate (Palmer Drought Severity Index (PDSI) and temperature) and indices of large-scale climate patterns that affect spring climate in the inland Northwest (ENSO and PDO).

Study area
Climate in the study area is continental with low annual precipitation, cold winters, and warm summers. Precipitation ranges from 200 to 450 mm, with much of this falling as snow in winter (1895–1991; www7.ncdc.noaa.gov/CDO/ CDODivisionalSelect.jsp, verified 4 January 2008; Environment Canada 2005a). A secondary peak in precipitation occurs in May and June in much of interior Oregon and Washington, but not British Columbia (Ferguson 1999; Environment Canada 2005b). Mean January temperatures range from −3°C in the Blue Mountains of north-eastern Oregon (1895–1991) to −8°C at the Cariboo sites in British Columbia (Williams Lake A 1971–2000; Environment Canada 2005a) and mean July temperatures range from 16 to 18°C throughout the study region.

Methods
Historical surface fires
We used fire-scar dates from existing crossdated chronologies at 15 sites in the interior of Oregon, Washington and southern British Columbia (Fig. 1). Fire-scarred trees were sampled systematically over large areas (262 to 30 000 ha) in grids of multi-tree plots (Heyerdahl et al. 2002, 2007; Wright and Agee 2004) or targeted within several topographic facets (Everett et al. 2000; Hessl et al. 2004), except at Cariboo, where nine 1-ha sites were sampled along an 85-km transect on the Fraser River Plateau (Daniels and Watson 2003) (Table 1). An average of 248 trees was crossdated per site (range 86–667 trees). The sampled trees were mostly ponderosa pine (88%, Pinus ponderosa P. & C. Lawson), but included some Douglas-fir (7%, Pseudotsuga menziesii var. glauca (Beissn.) Franco), western larch (3%, Larix occidentalis Nutt.), lodgepole pine (2%, Pinus contorta Doug. ex Loud.), western red cedar (<1%, Thuja plicata Donn ex D. Don) and western white pine (<1%, Pinus monticola Doug. ex D. Don). Although fire dates range from 1257 to 1996, we investigated the relationship of climate and fire synchrony only for the period from 1651 to 1900, when 1203 trees were recording across all sites (average 80 trees per site, range 4–435 trees). After 1900, surface fires abruptly ceased, probably owing to changes in land use including logging, grazing, and active fire suppression (Galbraith and Anderson 1991; Robbins and Wolf 1994; Hessburg and Agee 2003). An average of 1716 fire scars per site were crossdated during this analysis period (range 174–6083 fire scars). We identified fire years at each site as those with scars on ≥2 trees, yielding an average of 65 years with fire per site (range 29–151 years). Using the number of sites recording fire, we assigned each year to one of four categories of fire synchrony: low synchrony for years with fire at one to three sites (96 years); moderate synchrony for years with fire at four to six sites (101 years); and high synchrony for years with fire at more than six sites (35 years, equivalent to the 90th percentile in sites with fire during the analysis period). Years with fire at no sites were also considered highly synchronous but termed no-fire years (18 years).

Historical climate
We used a gridded tree-ring reconstruction of warm season temperature, expressed as the departure from mean temperature during a reference period (April through September, 1951–1970; Briffa et al. 1992). The reconstruction at the grid point within our study area (13, 45.0°N latitude, 120.5°W longitude) was significantly correlated with modern divisional temperature in Oregon and Washington during both spring and summer but the correlations were substantially higher for spring (April through June v. July through August, 1895–1983, r = 0.60 to 0.65 and r = 0.39 to 0.43, respectively, P < 0.001, climate divisions Oregon 8 and Washington 6, 7, and 9; www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp, verified 4 January 2008). The reconstruction at this grid point is also significantly correlated with spring temperature (r = 0.59, P < 0.0001) and summer temperature (r = 0.35, P < 0.01) near the fire-scar sites in southern British Columbia (Middle and Lower Stein, 1926–1983, Lyton; Environment Canada 2005a), but not with spring temperature (r = 0.34, P = 0.02) or summer temperature (r = 0.33, P = 0.12) near the Cariboo sites farther north (1961–1983, Williams Lake; Environment Canada 2005a).

We also used a gridded tree-ring reconstruction of the summer PDSI (June through August; Cook et al. 2004). Instrumental PDSI is significantly correlated among the grid points surrounding the study area (30, 41–44, and 54–56, 45.0° to 52.5°N latitude and 117.5° to 122.5°W longitude; pairwise correlations r = 0.26 to 0.96, P < 0.05, 1900–90), except the northernmost grid points (30 and 41) with the southernmost (44 and 56). To capture this common variance, we extracted the principal components of reconstructed PDSI from the eight grid points
Fig. 1. Location of the 15 existing fire-scar sampling sites (black dots) used to identify climate drivers of historical fire regimes in the inland Northwest and the distribution of ponderosa pine (grey areas, after Little 1971).

(1651–1900; Preisendorfer 1988; SAS Proc Princomp, SAS Institute 2003). The first principal component explained 77% of the historical variation. The second and third principal components accounted for only an additional 19 and 2% of the variance, respectively, and were not used in further analyses.

As indices of large-scale climate patterns, we used tree-ring reconstructions of a winter ENSO index (December to February, 1651–1900, Niño-3; D’Arrigo et al. 2005), and an annual PDO index (1700–1900; D’Arrigo et al. 2001). Even though it is shorter than our analysis period, we used the D’Arrigo et al. (2001) PDO index reconstruction because it captures more of the variance in the modern PDO index (44%) than other published PDO index reconstructions.

Climate drivers of regional fire years
To infer climate drivers of fire at interannual scales (1651–1900), we assessed whether climate (PDSI, temperature, or Niño-3) during our four categories of fire years (no-fire, and low-, moderate-, and high-synchrony) was significantly different from climate during the preceding and following years (±3 years), using superposed epoch analysis (SEA; Baisan and Swetnam 1990; Swetnam and Betancourt 1990; Grissino-Mayer 2001). The time series of PDSI had no temporal autocorrelation but those for temperature and Niño-3 did ($P = 0.12, P < 0.0001$, and $P < 0.0001$, respectively; SAS Proc Arima autocorrelation test with 6 lags, SAS Institute 2003). Therefore, for the temperature and Niño-3 time series, we fitted autoregressive moving-average models based on (i) lowest Akaike’s information criterion, and (ii) significant but uncorrelated parameter estimates (MA(1) after first differencing and AR(2), respectively) and used the white noise residuals in SEA (white noise test $P = 0.37$ and 0.37, respectively). In SEA, we identified significant climate departures as those exceeding 99% confidence intervals determined by bootstrapping (1000 trials; Mooney and Duval 1993; Grissino-Mayer 2001).

We assessed the effect of combined states of climate on fire synchrony using χ^2 goodness-of-fit tests ($\alpha = 0.05$) in which the observed values were the number of fire years that occurred during each of four combinations of climate (above or below average PDSI or temperature, 1651–1900) or large-scale climate patterns (positive or negative Niño-3 or PDO, 1700–1900). Expected values were derived from the proportions of years in each of the four combinations of climate or large-scale climate patterns regardless of fire activity. Because previous studies have identified variations in ENSO relationships with inland Northwest climate that depend on the phase of the PDO, we also assessed the independence of large-scale climate patterns during years when the
Climate drivers of historical fires in the inland Northwest

Table 1. Characteristics and amount of fire evidence collected at the 15 sites used to identify climate drivers of historical fire in the inland Northwest

<table>
<thead>
<tr>
<th>Site</th>
<th>Area (ha)</th>
<th>Lat. (°N)</th>
<th>Lon. (°W)</th>
<th>No. of trees</th>
<th>No. of fire scars</th>
<th>No. of fire years</th>
<th>First scar</th>
<th>Last scar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaribooA</td>
<td>100 834</td>
<td>51°40'</td>
<td>121°40'</td>
<td>9</td>
<td>136</td>
<td>174</td>
<td>29</td>
<td>1575</td>
</tr>
<tr>
<td>Middle Stein</td>
<td>50°18'</td>
<td>121°58'</td>
<td>1507</td>
<td>154</td>
<td>862</td>
<td>62</td>
<td>68</td>
<td>1511</td>
</tr>
<tr>
<td>Lower Stein</td>
<td>50°16'</td>
<td>121°39'</td>
<td>262</td>
<td>162</td>
<td>532</td>
<td>62</td>
<td>62</td>
<td>1619</td>
</tr>
<tr>
<td>South Deep</td>
<td>48°45'</td>
<td>117°40'</td>
<td>12 019</td>
<td>169</td>
<td>471</td>
<td>34</td>
<td>34</td>
<td>1342</td>
</tr>
<tr>
<td>Twentymile</td>
<td>48°40'</td>
<td>120°06'</td>
<td>3364</td>
<td>403</td>
<td>2560</td>
<td>39</td>
<td>39</td>
<td>1390</td>
</tr>
<tr>
<td>Frosty</td>
<td>48°37'</td>
<td>118°56'</td>
<td>6991</td>
<td>420</td>
<td>3877</td>
<td>83</td>
<td>83</td>
<td>1299</td>
</tr>
<tr>
<td>Quartzite</td>
<td>48°17'</td>
<td>117°37'</td>
<td>3116</td>
<td>142</td>
<td>1110</td>
<td>78</td>
<td>78</td>
<td>1384</td>
</tr>
<tr>
<td>Entiat</td>
<td>47°48'</td>
<td>120°20'</td>
<td>12 747</td>
<td>490</td>
<td>3689</td>
<td>76</td>
<td>76</td>
<td>1530</td>
</tr>
<tr>
<td>Teanaway</td>
<td>47°16'</td>
<td>120°54'</td>
<td>30 000</td>
<td>220</td>
<td>761</td>
<td>87</td>
<td>87</td>
<td>1567</td>
</tr>
<tr>
<td>Swauk</td>
<td>47°15'</td>
<td>120°38'</td>
<td>11 088</td>
<td>667</td>
<td>6083</td>
<td>151</td>
<td>151</td>
<td>1257</td>
</tr>
<tr>
<td>Nile</td>
<td>46°52'</td>
<td>121°05'</td>
<td>3237</td>
<td>232</td>
<td>2092</td>
<td>69</td>
<td>69</td>
<td>1367</td>
</tr>
<tr>
<td>Tucanon</td>
<td>46°11'</td>
<td>117°36'</td>
<td>2002</td>
<td>86</td>
<td>337</td>
<td>36</td>
<td>36</td>
<td>1526</td>
</tr>
<tr>
<td>Imnaha</td>
<td>45°07'</td>
<td>116°59'</td>
<td>2095</td>
<td>109</td>
<td>462</td>
<td>34</td>
<td>34</td>
<td>1526</td>
</tr>
<tr>
<td>Baker</td>
<td>44°47'</td>
<td>118°00'</td>
<td>3812</td>
<td>114</td>
<td>934</td>
<td>57</td>
<td>57</td>
<td>1428</td>
</tr>
<tr>
<td>Dugout</td>
<td>44°12'</td>
<td>118°22'</td>
<td>8585</td>
<td>215</td>
<td>1789</td>
<td>71</td>
<td>71</td>
<td>1478</td>
</tr>
<tr>
<td>Total</td>
<td>100 834</td>
<td></td>
<td></td>
<td>3719</td>
<td>25 733</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Cariboo is a composite of nine 1-ha plots sampled along an 85-km latitudinal transect.

effects of ENSO and PDO are amplified (Niño-3 and PDO index of the same sign) and when they are dampened (Niño-3 and PDO index of the opposite sign). We tested only three categories of fire synchrony: high (more than six sites), moderate (four to six sites) and a combined category for low synchrony and no-fire years (zero to three sites) to eliminate the small number of no-fire years.

To place our results in a subcontinental context, we generated composite maps of PDSI (grid points 1 to 203; Cook et al. 2004) across western North America for no-fire years and for two subcategories of highly synchronous fire years: dry western (1671, 1731, 1735, 1798, 1812, 1822, 1863, 1864, 1886, and 1895) and dry in the inland Northwest but wet in the Southwest (1652, 1706, 1720, 1751, 1756, 1759, 1771, 1776, 1783, 1794, 1800, 1828, 1833, 1834, 1839, 1840, 1843, 1844, 1869, 1883, 1888, 1889). We identified significant departures from mean values at each grid point (Brown and Hall 1999).

We developed a generalised linear model of the binomial family to hindcast the probability that a given year would have highly synchronous fires as a function of climate (PDSI, Niño-3, PDO; 1700–1900). We did not include temperature in these models because it is correlated with PDSI (r = 0.39). We fitted full models and used backward elimination to identify the best predictors (likelihood ratio tests, α = 0.05). The models were estimated using maximum likelihood (McCullagh and Nelder 1989; Splus 6.2 for Windows, Insightful Inc. 2002). We estimated a generalised classification accuracy by computing the area under the receiving operating characteristic curve (AUC; Murphy and Winkler 1987; Swets 1988). AUC ranges from 0.5 (50% accuracy expected at random) to 1.0 (perfect accuracy), and we assumed that values of >0.7, 0.8, or 0.9 indicate fair, good, or excellent accuracy, respectively (Swets 1988).

Results

Historical surface fires

Fires were highly synchronous across the inland Northwest every 7 years on average, but the intervals between such years varied through time (Fig. 2). Before 1725, 4 high-synchrony fire years occurred at intervals of 14 to 35 years. More than half of the no-fire years occurred between 1651 and 1725 (11 of 18 years) although it is only approximately one-third of the total analysis period. From 1725 to 1800, the intervals between successive high-synchrony fire years were relatively consistent, occurring every 2 to 10 years. However, during the 19th century, longer intervals of 10 to 19 years separated short periods with more frequent synchronous fire years. These pulses of fire included five 1-year intervals, in which fires burned at more than six sites in consecutive years. The year of maximum synchrony was 1828, when fire was recorded at 11 of the 15 sites.

Climate drivers of regional fire years

Interannual variation in climate was a strong driver of fire synchrony across the inland Northwest. Highly synchronous years were ones with warm temperatures and warm-dry PDSI, whereas years with fires at no or a few sites had cool temperatures and cool-wet PDSI (Fig. 3). Prior year’s climate was not an important driver of current year’s fire (1 to 3 prior years tested; Fig. 3). The occurrence of years with highly synchronous fire (more than six sites with fire) or with fire at zero to three sites was not independent of combined states of regional temperature and PDSI (P < 0.001). In contrast, the occurrence of years with fire at four to six sites was independent of combined states of climate (P = 0.19).
ENSO and PDO were not strongly associated with fire synchrony across the inland Northwest when considered individually, but in combination these large-scale climate patterns were significantly, albeit weakly, associated with fire synchrony. There were no significant departures in average Niño-3 during any of our categories of fire synchrony or during prior years (Fig. 3). Fire years in all three categories of synchrony (zero to three sites with fire, four to six sites with fire, and more than six sites with fire) occurred independently of combined states of ENSO and PDO when all phase combinations were included ($P = 0.19$, 0.93, and 0.11, respectively). However, when we included only additive combinations (Niño-3 and PDO both positive or both negative), highly synchronous fire years did not occur independently of these combinations ($P = 0.02$) but years with fire at zero to three sites and at four to six sites did ($P = 0.05$ and 0.67, respectively). Significantly more fire years than expected by chance (56% of fire years) occurred when both Niño-3 and PDO were positive whereas significantly fewer than expected by chance (29%) occurred when both were negative (Fig. 4).

In a subcontinental context, no-fire years were significantly cool-wet in the inland Northwest and significantly warm-dry in the Southwest (Fig. 5). In contrast, we identified three subcontinental-scale patterns during our 35 highly synchronous fire years: (i) 10 years when summers were significantly warm-dry across much of the west; (ii) 23 years when summers were warm-dry to the north but cool-wet to the south; and (iii) 2 years when summers were wet across much of the west (not shown).

Our model identified summer PDSI as a strong driver of widespread fire in the study area. It predicted years of high synchrony with good accuracy (AUC = 86%), although the percentage deviance explained was only 29%. Most of this percentage deviance (87%) was accounted for by PDSI; PDO and Niño-3 were dropped in the backward elimination.

Discussion
Fires were widespread across the inland Northwest during some years
During our analysis period (1651–1900), years of both extensive fire and no-fire occurred synchronously across the inland Northwest. Although every site has recording trees during the entire period of analysis, the low number of highly synchronous fire years early in our analysis period might be due to mortality and decay of trees, so that the evidence of the oldest fires
Climate drivers of historical fires in the inland Northwest

Interannual variation in climate was a strong driver of regionally synchronous fires

Current year's climate synchronised the occurrence of widespread surface fires among our sites in the inland Northwest, probably by affecting the length of the fire season and the moisture content of fine fuel during the fire season. Spring climate was important in driving regionally synchronous fires across the region, likely through its effect on snowpack, soil and ultimately fuel moisture, and hence the length of the fire season (Heyerdahl et al. 2002; Hessl et al. 2004; Gedalof et al. 2005; Littell 2006; Westerling et al. 2006). Although the reconstruction of temperature that we used was for the summer half of the year (April through September), we suggest that variation in spring temperature may have been more important than summer temperature in driving fire in our study area because the reconstruction captures more of the variation in spring than summer temperature. Our regional-scale analysis of the influence of summer climate generally corroborated local-scale results from the southern part of the study area where extensive fires occurred at individual sites during dry summers (Heyerdahl et al. 2002; Hessl et al. 2004; Wright and Agee 2004), consistent with the intuitive observation that dry weather during the fire season leads to lower fuel moisture and greater flammability.

Fuels can act as a limiting factor to fire spread in two ways: via fuel availability or fuel condition. The former mechanism is linked to a longer memory for climate, e.g. previous-year conditions conducive to productivity, whereas the latter is associated with fire weather on scales of days to months. In contrast to the current year's spring and summer climate, climate in antecedent years did not synchronise fire in our region, likely because fine fuels were sufficiently continuous and abundant that they did not limit fire ignition and spread in the forests we sampled. Dry forests in the inland Northwest have little memory for climate during years preceding fire, unlike the Southwest, where the abundance and spatial continuity of fine fuels may be greatly enhanced by a previous-year El Niño, providing...
Fig. 4. Synchrony in occurrence of fire (1700–1900), as a function of contingent states of ENSO (Niño-3 above or below zero) and PDO (above or below zero) during 79 years with fire at zero to three sites, 89 years with fire at four to six sites and 33 years with fire at more than six sites. The no-fire and low-synchrony categories were combined for this analysis to eliminate low cell counts. The effects of ENSO and Pacific Decadal Oscillation are amplified when both indices are of the same sign (left) but dampened when they are of opposite sign (right).

antecedent conditions conducive to fire spread (Swetnam and Betancourt 1990).

Most of the years when fires were not recorded at any site were also synchronised by climate. During all no-fire years, spring–summer temperatures were average to below-average and summers were generally cool-wet (Fig. 3). Although 5 of our 18 no-fire years occurred when reconstructed summer droughts were mild (PDSI from -0.126 to -1.407), our predictive model indicated that the probability of highly synchronous fire years is not 100% during years of extremely dry PDSI, because lack of ignition even during a dry year can also yield a no-fire year.

Large-scale climate patterns were weak drivers of regionally synchronous fires

Interaction between ENSO and PDO also synchronised fire during some years, consistent with their effect on spring temperature and spring snowpack in our region, where springs are relatively warm when both indices are positive and relatively cool when both are negative (Redmond and Koch 1991; Moore and McKendry 1996; Gershunov et al. 1999). In contrast, neither ENSO or PDO acting independently was a strong driver of fire, consistent with local-scale analyses in dry forests of the inland Northwest (Heyerdahl et al. 2002; Hessl et al. 2004; Wright and Agee 2004) and with regional-scale analysis in dry forests of the Northern Rocky Mountains just to the east, where historical fires were not strongly driven by variation in PDO (Heyerdahl et al. in press).
The occurrence of our highly synchronous regional fire years is consistent with climate and large-scale climate patterns across western North America (Kitzberger et al. 2007). Over half (67%) of our highly synchronous fire years occurred under a northwest–southwest dipole in summer PDSI (Fig. 5). During the period for which we have a reconstruction of the PDO (1700–1900), nearly half (42%) of the 33 highly synchronous fire years occurred during years when Niño-3 was positive (El Niño) and the PDO was in its warm phase. During the 20th-century, the northwest–southwest dipole in winter–spring precipitation was especially prominent during years when ENSO and PDO were in phase (Gershunov et al. 1999) and the carryover effects of cool-season precipitation, temperature, and snowpack played an influential role in determining fire-season soil and fuel moisture (Seager et al. 2005). In support of the dipole effect of ENSO on climate in the inland Northwest v: the American Southwest, only one highly synchronous fire year is common to both regions (1729), a year of west-wide drought (Swetnam and Baisan 2003). Of the 2 highly synchronous fire years that occurred when summers were generally cool–wet across the west (1768 and 1791), both had relatively warm springs, and positive Niño-3 (El Niño) and PDO, suggesting that occasionally widespread fires may have occurred early in the fire season when snow packs melted relatively early, as has happened late in the 20th-century (Westerling et al. 2006). As a consequence, subsequent cool–wet summers would have had little impact during these few years.

Implications for the future

Nearly a century of fire exclusion in the inland Northwest reduced fire frequency at most of our sites in the mid 20th-century. However, a recent study suggests that relatively long snow-free seasons late in the 20th-century may have resulted in more large fires in the western United States (Westerling et al. 2006). Our work indicates that the relationship between spring–summer temperature and area burned observed in the modern record was also present in a 250-year period that pre-dates the recent era of major land-use change (1651–1900). Our results therefore lend strong support to the hypothesis that variations in climate, including springtime temperature and summertime soil and fuel moisture, have historically had large effects on area burned. Over the past century, changes in fuel amount, structure, and continuity resulting from fire exclusion in dry forests across much of the region make high-severity fires more likely, although such fires may have occurred at least occasionally at fine scales in all forests except the driest ponderosa pine woodlands.

Our examination of over 3700 fire-scarred trees across 15 sites confirms and extends existing knowledge of the climate drivers of fire in the inland Northwest and suggests that top-down controls on fire are consistent across temporal scales. More broadly, Holocene records, the fire-scar record, and contemporary records link drier and warmer climates to increased fire activity. We have compiled an interannual, and even longer time scales. Significance tests and predictive models identified warm season drought as the variable most clearly associated with fire synchrony across the region. Of the variety of fire regimes in inland Northwest ecosystems, the low-severity type is the best understood, but may become less prevalent if increasing temperatures interact with fuel structures conducive to higher-severity fires. Our understanding of historical fire climatology will be most relevant to current fire regimes when coupled with research on climatic controls on mixed- and high-severity fire (e.g. Taylor and Skinner 2003; Gedalof et al. 2005; Morgan et al. in press). A focus on climatic controls across the complete range of fire regimes in future research may provide the greatest benefit to management and policy.

Acknowledgements

We thank Rudy King for guidance on the statistical analysis. We thank Clint Wright for providing fire dates from his Teanaway site. We thank our many colleagues for their help in generating the fire-history chronologies we used in the present analysis. We thank the Helen Riaboff Whiteley Center of the University of Washington for providing the retreat where we began this analysis. We thank Penny Morgan, Tom Swetnam, and two anonymous reviewers for comments on the manuscript.

References

Environment Canada (2005b) ‘2002 CD-CD West CD.’ (Meteorological Service of Canada, National Archives and Data Management
Branch: Ottawa, ON) Available at climate.weatheroffice.ec.gc.ca/prods_servs/cdcd_iso_e.html [Verified 4 January 2008]

Heyerdahl EK, Morgan P, Riser JP, II (in press) Multi-season climate synchronized widespread historical fires in dry forests (1630–1900), Northern Rockies, USA. *Ecology*

Morgan P, Heyerdahl EK, Gibson CE (in press) Multi-season climate synchronized widespread forest fires throughout the 20th-century, Northern Rocky Mountains. *Ecology*

Manuscript received 11 November 2006, accepted 10 August 2007

http://www.publish.csiro.au/journals/ijwf