Complex Permittivity Model for Time Domain Reflectometry Soil Water Content Sensing: II. Calibration

R.C. Schwartz*  
S.R. Evett  
J.M. Bell  
USDA-ARS  
Conservation and Production Research Lab.  
Bushland, TX 79012

Despite numerous applications of time domain reflectometry (TDR), serious difficulties in estimating accurate soil water contents under field conditions remain, especially in fine-textured soils. A complex dielectric mixing model was calibrated for fine-textured soils (24–45% clay) and its accuracy was evaluated and compared with empirical calibrations. The Ap and Bt horizons of two soils were packed into columns and adjusted to volumetric water contents (θ) ranging from air dry to near saturation. Travel time and bulk electrical conductivity (σ_T) were measured using TDR at temperatures (T) of 8, 22, and 40°C and using three coaxial cables to obtain a range of input spectrum bandwidths (ω_S). Apparent permittivities (K_a) were predicted using the complex permittivity model with measured θ, T, σ_T, ω_S, and soil bulk density, and fitted to measured K_a using three coaxial cables to obtain a range of input spectrum bandwidths (ω_S). Apparent permittivities (K_a) were predicted using the complex permittivity model with measured θ, T, σ_T, ω_S, and soil bulk density, and fitted to measured K_a using an empirical polarization loss factor. Measured K_a was best approximated using the power-law dielectric mixing model with semiempirical effective frequency estimates and a = 0.68. Predicted A_x increased with increasing clay content, cation exchange capacity, and measured specific surface areas. The two-parameter power-law calibration removed temperature bias in θ estimates and reduced the RMSE in θ estimates by an average of 0.006 m³ m⁻³ compared with an empirical calibration. Empirical models predicted field θ with oscillations of up to 0.022 m³ m⁻³ in phase with soil temperatures resulting from permittivity temperature dependencies. In contrast, the calibrated dielectric mixing model removed or dampened in-phase θ fluctuations to <0.004 m³ m⁻³, which permitted the detection of more subtle changes (<0.02 m³ m⁻³) in θ.

Abbreviations: BET, Brunauer, Emmett, and Teller; RSD, residual standard deviation; TDR, time domain reflectometry.

During the past 30 yr, the development and continuing improvement of the TDR method for in situ measurement of soil water contents has led to significant advances in the study of hydrologic processes within the soil profile. Much of the fundamental success of this technique was due to a broadly applicable calibration equation (Topp et al., 1980) for mineral soils that reflected the near-univariate response of measured permittivity to soil water content. Later experimental work (Ledieu et al., 1986; Herkelrath et al., 1991; Heimovaara, 1993; Topp and Reynolds, 1998) demonstrated that the square root of permittivity, or equivalently travel time, varied linearly with volumetric water content, θ. This approximation resulted in a calibration equation with a slope and intercept that were influenced in a nontrivial way by soil properties (Ferré and Topp, 2002; Robinson et al., 2003).

Although empirical approaches can provide acceptable estimates of soil water contents, the use of electromagnetic mixing models can improve the understanding of the dielectric behavior of soils and lead to more physically based calibration equations. Dobson et al. (1985) demonstrated that both a dielectric mixing formula based on a dispersion model (de Loor, 1968) and a power-law approximation (Birchak et al., 1974) were able to describe the high-frequency (>1 GHz) complex dielectric permittivity of soil. In addition to the air, mineral, and water components, Dobson et al. (1985) incorporated a bound water component into their mixing models to account for reduced polarizability of water near clay surfaces. In a later study, Heimovaara et al. (1994) used a four-component power-law mixing model to describe the complex dielectric permittivity of soils with low organic C content (≤37 g kg⁻¹). Most significantly, Heimovaara et al. (1994) demonstrated that imaginary parts of the dielectric permittivities need to be accounted for in the mixing model to correctly describe the measured apparent permittivities. In practice, most of the mixing models developed for soils have omitted the imaginary contributions of some or all of the dielectric damping mechanisms associated with bound and bulk water (Dobson et al., 1985; Roth et al., 1990; Dirksen and Dasberg, 1993; Heimovaara et al., 1994; Or and Wraith, 1999). More recently, Boyarskii et al. (2002)
Wraith (1999) demonstrated that the temperature response of water and the volumetric fraction of bound water. Evett et al. Moreover, the use of specific surface area as a parameter in the field conditions where temperature fluctuations are significant.

Estimation of soil water contents with TDR under field conditions introduces new sources of uncertainty that are not easily addressed using conventional calibration equations. Long cables and other hardware such as multiplexers can significantly reduce the measurement bandwidth of the signal (Logsdon, 2000, 2006), thereby changing the calibration. Measured apparent permittivities ($K_a$) are influenced by soil bulk densities ($\rho_b$), bulk electrical conductivities ($\sigma_0$), and clay contents (Jacobsen and Schjönning, 1993; Malicki et al., 1996; Persson and Berndtsson, 1998; Hook et al., 2004; Evett et al., 2005) that may differ in the field from the calibrated soils. Lastly, $K_a$ measurements using TDR can exhibit temperature sensitivities inconsistent with those expected for bulk water (Persson and Berndtsson, 1998; Or and Wraith, 1999; Evett et al., 2005). We emphasize that all of the above difficulties with field measurements are exacerbated for high-surface-area soils (Logsdon, 2005, 2006).

Most, if not all, of the documented efforts at temperature corrections for TDR water content calibrations have been empirical (e.g., Ledieu et al., 1986; Pepin et al., 1995; Gong et al., 2003; Benson and Wang, 2006; Kahimba and Ranjan, 2007) with the notable exception of Or and Wraith (1999). Or and Wraith (1999) demonstrated that the temperature response of dielectric permittivity in soils represented the interplay among the temperature dependencies of the static permittivity of bulk water and the volumetric fraction of bound water. Evett et al. (2005) hypothesized that temperature sensitivity in soil resulted from the dependence of $\sigma_0$ on temperature and accordingly developed a calibration equation using TDR-measured $\sigma_0$.

Dielectric mixing models, when properly specified, are practical alternatives to the empirical calibrations conventionally used in field applications because soil $\rho_b$, $\sigma_0$, and temperature measurements can be incorporated into the calibration. Moreover, the use of specific surface area as a parameter in the mixing model (Or and Wraith, 1999) is desirable because of its physical significance and its relationship to temperature effects on apparent permittivity and to soil clay contents. Although dielectric mixing models that include imaginary components have been used under isothermal, laboratory conditions (Dobson et al., 1985; Heimovaara et al., 1994), we are unaware of documented attempts to extend these calibrations to field-measured $K_a$ using TDR. In practice, $K_a$ is measured and subsequently $\theta$ must be estimated based on its specification within the complex dielectric mixing model. Consequently, this transforms the straightforward calculation of $K_a$ as a function of $\theta$ into a one-dimensional root-finding problem. A similar situation arises out of the calibration of capacitance sensors using circuit theory (Kellers et al., 2004).

The overall goal of this study was to develop a practical model and framework to allow temperature- and frequency-dependent water content calibrations in fine-textured soils for the interpretation of routine TDR measurements in the field. The specific objectives of this study were to calibrate the complex dielectric mixing models presented by Schwartz et al. (2009) for the Ap and Bt horizons of two fine-textured soils, compare water content estimation errors of this physically based model with conventional calibration equations, and evaluate the complex dielectric mixing models’ performance under field conditions.

### MATERIALS AND METHODS

Soils were collected from the Ap (0–0.15 m) and Bt (0.15–0.30 m) horizons of a Pullman silty clay loam (a fine, mixed, superactive, thermic Torreric Paleustoll) in Bushland, TX, and a Richfield silt loam (a fine, smectitic, mesic Aridic Argustoll) in Tribune, KS. Smectite and mica (illite) dominate the clay fractions of these soil horizons (Soil Survey Staff, 2008). Clay contents of the sampled soils (Table 1) determined using the hydrometer method (Gee and Or, 2002) ranged from 24 to 45%. The specific surface area of oven-dry (105°C), 2-mm sieved soil was estimated using an automated analyzer (Quantachrome Nova, Boynton Beach, FL) with $N_2$ adsorbate in conjunction with the Brunauer, Emmett, and Teller (BET) equation. A multipoint surface area estimation was calculated based on the gas volume measurements across a range of six relative vapor pressures (Pennell, 2002). The specific surface area was also determined by bringing 5 g of 2-mm sieved soil into equilibrium with deionized water in a humidity chamber. Subsequently, the samples were placed in a closed chamber containing saturated MgNO$_3$ at 20°C corresponding to a relative humidity of 54.4% (Greenspan, 1977) and permitted to equilibrate for a period of approximately 2 wk. Specific surface area was calculated based on the gravimetric water content of the equilibrated samples assuming a monolayer of water molecules with 0.3-nm thickness (Logsdon, 2005).

Soils were sieved through a 12.7- by 12.7-mm mesh screen and packed in 0.2-m-diam. by 0.21-m-long Schedule 40 polyvinyl chloride

<table>
<thead>
<tr>
<th>Soil</th>
<th>Texture</th>
<th>Clay</th>
<th>Sand</th>
<th>CEC‡</th>
<th>$A_s (N_2)$</th>
<th>$A_s (H_2O)$</th>
<th>$\rho_b$</th>
<th>$\sigma_{25}$</th>
<th>n</th>
<th>$\Delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pullman Ap</td>
<td>silty clay</td>
<td>39.4</td>
<td>16.5</td>
<td>24.0</td>
<td>48.2</td>
<td>249</td>
<td>1370</td>
<td>0.114</td>
<td>1.180</td>
<td>0.0224</td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>silty clay</td>
<td>45.0</td>
<td>13.2</td>
<td>28.5</td>
<td>35.0</td>
<td>182</td>
<td>1330</td>
<td>0.106</td>
<td>0.985</td>
<td>0.0247</td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>silt loam</td>
<td>24.3</td>
<td>15.7</td>
<td>18.9</td>
<td>47.3</td>
<td>240</td>
<td>1250</td>
<td>0.118</td>
<td>1.196</td>
<td>0.0234</td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>silty clay loam</td>
<td>34.3</td>
<td>14.2</td>
<td>24.0</td>
<td>47.3</td>
<td>1250</td>
<td>0.118</td>
<td>1.196</td>
<td>0.0234</td>
<td></td>
</tr>
</tbody>
</table>

‡ Particle-size distributions, cation exchange capacities (CEC), and specific surface areas ($A_s$) represent the average of two samples; bulk density ($\rho_b$) reflects the average bulk density of packed columns; $\sigma_{25}$ is the bulk direct-current conductivity at saturation and 25°C, $n$ is a fitted empirical exponent, and $\Delta$ is a multiplier to account for the response of electrical conductivity to temperature.

† Determined using pH 7 buffered NH$_4$OAc displacement solution.

§ Determined using $N_2$ gas adsorbate with the BET (Brunauer, Emmett, and Teller) equation (Pennell, 2002) and by using deionized water ($H_2O$) with soils equilibrated at 54.4% relative humidity (Logsdon, 2005).
Table 2. Physical and electrical properties of coaxial cables, cabling system, and time domain reflectometry probe. All measurements are averages of at least five acquired waveforms.

<table>
<thead>
<tr>
<th>Coaxial cable between reflectometer and multiplexer</th>
<th>Cabling system response†</th>
<th>Probe characteristics associated with cabling system‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable make (all 50 Ω)</td>
<td>Length (m)</td>
<td>$\tau_c$ (ns)</td>
</tr>
<tr>
<td>RG 8/U (Belden 9913)</td>
<td>1.5</td>
<td>0.350</td>
</tr>
<tr>
<td>RG 8/U (Belden 9913)</td>
<td>12.0</td>
<td>0.495</td>
</tr>
<tr>
<td>RG 58AU/U (Alpha 9058AC)</td>
<td>12.0</td>
<td>1.758</td>
</tr>
</tbody>
</table>

† $\tau_c$: fitted time constant obtained from the open-ended reflection at the termination of the cable; $\omega_S$: corresponding input spectrum bandwidth (see Schwartz et al., 2009).
‡ $t_1$, time when the pulse exits the probe handle; $t_{bis}$, time corresponding to the intersection of the tangent of the first rising limb and the preceding base-line tangent; $\rho_{air}$, reflection coefficient of the probe in air; $\rho_{sc}$, reflection coefficient of the short-circuited probe; $K_p$, probe constant; $Z_g$, probe characteristic impedance; $L_e$, electrical probe length.
§ Theoretical probe constant is 3.2324 m$^{-1}$ based on a derivation by Paolo Castiglione (personal communication. 2008).
¶ Electrical length of the probe is based on measured travel time in water assuming a static dielectric constant of 79.49 at 22°C (Stogryn, 1995). The physical length of the probe used in these measurements was 0.199 ± 0.001 m.

After soils were packed, trifilar probes (0.2-m length) were installed vertically into the prepared soil columns. The trifilar probes had rod diameters of 3.2 mm and an outer rod separation distance of 60 mm. Three replicate columns were prepared for each water content level. A range of volumetric water contents were obtained using two methods. Volumetric water contents ≥ 0.20 m$^3$ m$^{-3}$ were achieved by combining air-dry soil with different ratios of deionized water, thoroughly mixing to achieve uniformity, and packing the mixture into the columns in 20-mm increments. For water contents ≥ 0.25 m$^3$ m$^{-3}$, air-dry soil was packed into the columns in 20-mm increments, after which the soil was saturated from the bottom with 0.001 mol L$^{-1}$ CaSO$_4$. In this case, water contents were adjusted through a combination of drainage (at water contents near saturation) and short, 4-h periods of evaporation, after which the columns were sealed and permitted to equilibrate. Evaporative drying of the entire length of the column was accommodated during these periods by drawing a small vacuum through the bottom of the column to establish air flow. Equilibrium was assumed to be attained when a negligible change in permittivity with time was recorded after a minimum of 1 wk. This process was repeated until the desired water contents were achieved, which, at the lower water contents, took in excess of a month for the Bt horizons.

Waveforms were acquired using a Tektronix 1502C cable tester (Tektronix, Beaverton, OR). For every cable setup, the lead 3-m RG 58 coaxial cable attached to the TDR probe was connected to a 16-port coaxial multiplexer (Model TR-200, Dynamax, Houston, TX; Evett, 1998). A range of bandwidths was achieved by using three coaxial cables (Table 2) that connected the multiplexer to the cable tester. Four replicate travel time and apparent bulk electrical conductivity measurements were taken at room temperature (22–23°C), in a refrigerator (6–8°C), and in a water-jacketed incubator (40–42°C). Except for the first 0.5 m of the coaxial cable connected to the probe, all cables and connections were maintained at room temperature. Time domain reflectometry measurements were completed after 2 d of equilibration under each temperature regime. Travel time measurements were recorded for each cable and each of the three replicate columns at every water content and temperature combination. After each set of measurements at a given temperature regime, the columns were weighed on a 30-kg (±1 g) balance. Upon completion of TDR measurements for a given column, the soil was removed, weighed, air dried in a 40°C oven for 3 d, and weighed again. Subsamples of the air-dried soils were oven dried (105°C) to determine the bulk density and the final gravimetric and volumetric water contents of the soil in the column. Based on the maximum calculated 95% confidence interval of 0.007 kg kg$^{-1}$ for the gravimetric water content of soils packed into columns, errors in measured water contents were < 0.01 m$^3$ m$^{-3}$.

Waveforms were interpreted to estimate travel times using the TACQ software (Evett, 2000a,b). Because of the difficulty in identifying the time, $t_1$, when the step pulse exited the probe handle at low soil water contents, $t_{bis}$ was estimated by adding a fixed offset to $t_{bis}$, the time defined by the intersection of the tangent to the rising limb and the preceding baseline tangent. Fixed offsets ($t_1 - t_{bis}$) were estimated at large soil water contents (≥ 0.40 m$^3$ m$^{-3}$) and were influenced by coaxial cables (Table 2), probably because low pass filtering by lossy cables increased the travel time through the epoxy probe handle. The time associated with the second reflection was estimated by the intersection of the baseline tangent (20 points) with the rising limb tangent (11 points). The stop point of the baseline tangent was set to 65% at low soil water contents (< 0.25 m$^3$ m$^{-3}$) and the default of 75% at greater soil water contents. All other parameters used to estimate travel time were set to the default values used by the TACQ software (Evett, 2000a,b). The use of these waveform interpretation methods for the three coaxial cables yielded an average electrical length $L_e$ of 0.1982 m (±0.0005 SD) for a single probe in deionized water that did not vary significantly from its measured physical length of 0.199 ± 0.001 m (Table 2). Therefore, we used $L_e = 0.20$ m for all calculations to represent the probe length, which varied from 0.199 to 0.201 m in this study.

The bandwidth associated with each cable setup was determined from the signal rise time at the termination of the 3-m lead RG 58 cable with the TDR probe removed. The same multiplexer, interconnects, and cables used to measure the travel time were also included in the circuit. Using the unit step response function (Kaiser, 2005) with time, $t_0$ (ns), and amplitude, $V_0$, offsets,

$$\frac{V - V_q}{V_{100} - V_0} = 1 - \exp \left( -\frac{t - t_{bis}}{\tau_e} \right)$$

[1]

the mean transition duration of the pulse $\tau_e$ (ns) and the 100% amplitude level $V_{100}$ were fitted to the measured open-ended reflection (Fig. 1). The effective bandwidth of the pulse at the termination of the coaxial cable, $\omega_S$ (rad s$^{-1}$), was calculated as per Schwartz et al. (2009) and decreased with increasing cable length (Table 2) and increasing cable manufacturer attenuation rating (98 and 360 dB km$^{-1}$ at 400 MHz for the RG 8/U and RG 58AU/U cables, respectively).

Bulk electrical conductivity measurements were completed using the procedure of Castiglione and Shouse (2003) with cable-specific air
and short-circuit reflection coefficients. Short-circuit measurements were completed by clamping two Al plates together with the probe rods sandwiched between at the midpoint of the rod length. Probes were calibrated at a temperature of 22°C in deionized water and four reference KCl solutions (2.5, 5.0, 7.5, and 10.0 mmol L−1, equivalent to 0.035, 0.070, 0.106, and 0.141 S m−1, respectively, at 25°C). Electrical conductivity of the solutions was measured independently with a standard electrical conductivity meter calibrated using the same KCl solutions. The probe constant was estimated by finding the slope of the scaled reflection coefficient (Castiglione and Shouse, 2003) vs. the measured conductivity and multiplying by the cable characteristic impedance (50 Ω). Calculated probe constants were within 4% of the theoretical constant for these probes (Table 2). The predicted in response to the saturation ratio and temperature was evaluated by fitting an empirical equation to the measured electrical conductivity data (Fig. 2).

Estimated parameters describing the σ₀ response (Table 1) were used to plot trend lines of Kₑ as a function of θ, which would otherwise be discontinuous if the actual measurements were used.

The frequency- and temperature-dependent complex dielectric permittivity of the soil, ε*(ω, T), was described using a power-law mixing model (Birchak et al., 1974; Dobson et al., 1985; Dirksen and Dasberg, 1993) in combination with the imaginary conductive loss factor (Schwartz et al., 2009, Eq. [6] and [12]). Calculation of the volume fraction and permittivity of bound water requires an estimate of the specific surface area Aₛ (m² kg⁻¹) and the Cole–Davidson distribution coefficient (βₑCD), which are fitted parameters. In addition, we used a single-frequency approximation to estimate permittivity, which requires the substitution of an effective frequency for ω in Eq. [2] and [3].

We considered two approaches to estimate the center or effective frequency of the attenuated pulse, ωₑ. A direct calculation of effective frequency was based on the centroid of the amplitude spectrum (Schwartz et al., 2009):

$$\omegaₑ = \frac{\int_0^\infty S(\omega, ωₑ) \exp\left[-(\omega - \omegaₑ)2L\right] \omega \, d\omega}{\int_0^\infty S(\omega, ωₑ) \exp\left[-(\omega - \omegaₑ)2L\right] \, d\omega}$$

and hereafter referred to as the de Loor–Dobson dielectric mixing model. In both mixing models, bulk and bound water complex permittivity can be described using the Debye or Cole–Davidson relaxation equations, respectively (Schwartz et al., 2009). Calculation of the volume fraction and permittivity of bound water requires an estimate of the specific surface area Aₛ (m² kg⁻¹) and the Cole–Davidson distribution coefficient (βₑCD), which are fitted parameters. In addition, we used a single-frequency approximation to estimate permittivity, which requires the substitution of an effective frequency for ω in Eq. [2] and [3].
is the predicted permittivity in Eq. [7]. We used bisection (Press 8, 9) and an exponent to describe the increase in polarization losses with volumetric water content (m).

where \( s(\omega_\infty) \) is the input amplitude spectrum described by a third-order Butterworth filter with bandwidth \( \omega_\infty \), \( L \) is the length of the TDR probe (m), and \( \alpha(\omega) \) is the attenuation factor, which can be evaluated using one of the mixing models across a range of frequencies (Schwartz et al., 2009). Alternatively, with the assumption that attenuation increases linearly with frequency, we derived an approximate effective frequency (Schwartz et al., 2009) as

\[
\omega_R = \frac{\omega_R(\omega_\infty)}{1 + 2 \pi 7.44 \times 10^7 \left(1 - \frac{1}{\left(\alpha(\omega_\infty)\right)^{0.599}}\right)}
\]

where \( \alpha(\omega) \) is the attenuation function associated with the polarization of bulk water evaluated at the angular frequency of \( \omega = \omega_R(\omega_\infty) \) resulting from losses associated with bound water:

\[
\omega_R(\omega_\infty) = \frac{\omega_\infty}{1 + \omega_\infty \rho_0 \mu_0 s^a / \text{Re} \left[ s^a(\omega, T) \right]}
\]

where \( \rho_0 \) is a fitted polarization loss factor (m\(^3\) m\(^{-3}\)) related to the imaginary permittivity of bound water (Schwartz et al., 2009), \( m \) is a dimensionless empirical coefficient, and \( \mu_0 \) is the vacuum magnetic permeability (1.257 x 10\(^{-6}\) H m\(^{-1}\)). Once the effective frequency \( \omega_R \) is calculated using either of the two methods, the single-frequency approximation of apparent permittivity was calculated as

\[
K_s(\omega, T) = \text{Re} \left[ \frac{s^a(\omega, T)}{2} \left( \frac{1}{1 + \sqrt{\text{Im} \left[ s^a(\omega, T) \right]}} \right)^2 + 1 \right]
\]

It is important to recognize that the only difference between \( K_s \) calculated using the direct approach to evaluate the effective frequency (Eq. [4]) and the approximate solution (Eq. [5]) is that the effective frequency using the former approach is directly coupled to the dielectric mixing model. In contrast, the approximate solution is not coupled to the mixing models. Consequently, a change in any of the variables or parameters within the mixing model that results in a change in dielectric losses will not influence the calculated frequency decline in Eq. [5]. A detailed description of the derivations and algorithms used to calculate the apparent permittivity of the soil is given by Schwartz et al. (2009).

Given the measured values of soil water content, temperature, bulk electrical conductivity, bulk density, and the bandwidth of the input spectrum, \( K_s \) can be calculated using Eq. [7] with estimates of the vector of parameters to be optimized \( \beta \), which varies based on the selected mixing model and frequency calculation (Table 3). All other parameters in the model were held constant (Table 4). Parameters were optimized by minimization of the objective function:

\[
\Phi(\beta, \chi) = \sum_{i=1}^{N} \left[ \sqrt{K_s(x_i)} - \sqrt{K_s(\beta, \chi)} \right]^2
\]

where \( K_s \) is the permittivity based on travel time measurements, \( \chi \) is the predicted permittivity in Eq. [7], and \( x_i \) is the vector of independent variables \( (0, T, \sigma_T, \rho_0, \omega_\infty) \) for \( i = 1 \) to \( N \) observations. The objective function is formulated above using the square root of permittivity because initial calculations demonstrated that this results in a lower sum of squared error in water contents. Minimization of the objective function was implemented using an adaptive, model-trust region method of nonlinear, least squares parameter optimization (Dennis et al., 1981; Dennis and Schnabel, 1983).

The calculation of apparent permittivity in Eq. [7] was based on known soil water contents; however, in practice, water contents must be estimated from the measured values of apparent permittivity. Consequently, this transforms the straightforward calculation of apparent permittivity into a one-dimensional root-finding problem for the function \( f(\theta) \), defined as

\[
f(\theta) = K_s - \hat{K}_s(0, T, \sigma_T, \rho_0, \omega_\infty)
\]

where \( K_s \) is the permittivity based on travel time measurements and \( \hat{K}_s \) is the predicted permittivity in Eq. [7]. We used bisection (Press et al., 1992) to solve the root problem with \( \theta \) bracketed between 0 and 0.6 m\(^3\) m\(^{-3}\). Initial evaluations of the root-finding problem revealed difficulties at very low water contents (<0.05 m\(^3\) m\(^{-3}\)) where roots converged to negative water contents and where Eq. [7] is computationally unstable and physically unrealistic. Inspection showed that the mixing models overestimated permittivities at these very low water contents. Such a result is probably due to the failure of the mixing models to correctly predict composite dielectric permittivity at low water contents (Robinson, 2004) and potentially differing dielectric response and solid interaction with interlayer water compared with water adsorbed to exterior clay surfaces. Fitting a second-order polynomial equation to the measured \( K_s(0) \) data of both Bt horizons permitted the calculation of the intercept \( K_s(0) \sim 2 \), which, when substituted into the power-law mixing equation, yielded a solid-phase permittivity of 3.2 for a bulk density of 1.35 Mg m\(^{-3}\) and a power-law mixing exponent \( a = 0.5 \) to 0.65. Based on these results, we calculated an apparent solid-phase permittivity \( (\varepsilon_{ss}) \) as

\[
\varepsilon_{ss} = \begin{cases} 
\varepsilon_s & \text{if } \theta > \theta_{bw}/3 \\
3.2 + \frac{3\theta_{bw}(\varepsilon_s - 3.2)}{\theta_{bw}/3} & \text{if } 0 \leq \theta_{bw}/3
\end{cases}
\]
and substituted for $\varepsilon_s$ into both mixing models. For all calibrations, we assumed that the solid-phase dielectric permittivity of soil, $\varepsilon_s$, was 5.0. This modified calculation was used for all simulations and model fits. It resulted in negligible changes in estimated permittivities and model fits but permitted the evaluation of the roots in Eq. [9] with no convergence failures.

RESULTS AND DISCUSSION

Nonlinear least squares optimizations were completed for each of the three cable setups associated with a single bandwidth (Table 2), all of the cable setups simultaneously, and only the RG 8 cables. Optimizations based on different coaxial cable data sets were examined to evaluate the influence of bandwidth on fitted parameter values and model errors. Initially, optimizations were completed for all mixing models where parameters $\beta_{CD}$, $p$, and $m$ were fitted. Parameters $p$ and $m$ directly influence the calculation of the effective frequency (Eq. [6]), whereas $\beta_{CD}$ influences the frequency response of bound water, which, in turn, affects the calculated effective frequency. The distribution coefficient $\beta_{CD}$ typically converged to values greater than unity (which is physically unrealistic) and had little influence on the resulting solution. The empirical parameter $m$ converged to values both greater and less than unity and with slightly better fits than with $m = 1$, but with greater uncertainties in the parameter estimates. Based on these initial results, we fixed both $\beta_{CD}$ and $m$ to unity to avoid overparameterization. With $\beta_{CD} = 1$, the relaxation equation describing the complex permittivity of the bound water fraction (Schwartz et al., 2009) reverts to the Debye model for a given distance from the mineral surface.

In all optimizations of the power-law mixing model, the exponent $a$ was positively correlated with the specific surface area, $A_s$ (Fig. 3a). Optimization of synthetic data calculated using $A_s = 200 \text{ m}^2 \text{ g}^{-1}$ and $a = 0.68$ (Fig. 3b) demonstrated that $K_a$ was predicted with small errors using $a = 0.80$ and a fitted $A_s$ of 268 m$^2$ g$^{-1}$. These results suggest that, for the error levels associated with our measurements, $A_s$ is not uniquely defined when fitted simultaneously with the power-law exponent $a$. To avoid this problem, we fixed $a = 0.68$, which represents the midpoint of the fitted range (Fig. 3a). This is similar to the value of $a = 0.65$ used by Dobson et al. (1985) and an average value of $a = 0.63$ obtained by Or and Wraith (1999).

For the remaining analysis and discussion, we consider the optimizations that include both RG 8 cables (1.5- and 12-m lengths, Tables 5 and 6) because they reflect the combined model performance for two input spectrum bandwidths and hence a wider range of effective frequencies. The data obtained using the 12-m RG 58 cable are not included in these optimizations because of the potential for large errors in travel time estimation as a result of significant signal attenuation. Wraith and Or (1999) discussed in detail the difficulties of travel time estimation in the presence of signal attenuation and the concomitant decrease in the slope of the second reflection. In the present study, complete attenuation of waveforms was observed for the near-saturated Pullman Bt soil at 40°C using the 12-m RG 58 cable. Although, the RG 58 data are not included in the model calibration, the dielectric response for this cable can be predicted using the mixing model, as elaborated below.

Optimizations with $a$ fixed to a value of 0.68 resulted in both small increases (<11%) and decreases in the residual standard deviation (RSD, Table 6b) for fits in which the effective frequency was calculated using an empirical equation (Eq. [5]). When $a$ was constrained to 0.68, however, RSD increased up to 60% for optimizations using the direct approach to evaluate the effective frequency (Eq. [4]) (Table 5b). Indeed, all optimizations using the direct approach to calculate the effective frequency (Table 5) had consistently greater RSDs than the empirical method (Table 6), independent of the number of fitting parameters or the choice of mixing model. Apparently, directly coupling the effective frequency to the mixing model reduced the flexibility of the model to simultaneously accommodate frequency-dependent attenuation and bound water effects on the apparent permittivity. This may have been a result of the simplified assumptions used in the derivation of the dielectric response of bound water across a range of frequencies and the associated dielectric damping, the principal mechanism responsible for the decline in effective frequency. Alternatively, a fitted specific surface area that is well suited for a single-frequency approximation of apparent permittivity may be poorly suited to describing attenuation across a wide range in frequencies. Despite these difficulties in using the direct calculation of effective frequency (Eq. [4]), we note that using this approach to calculate the apparent permittivity reduced the RSD by at least 15% compared with optimizations where frequency was constrained to the bandwidth of the input spectrum, $\omega_s$ (Table 2). This highlights the importance of including within the calibration equation a means to account for loss of bandwidth during pulse propagation.

Optimizations using the uncoupled, empirical frequency approximation (Eq. [5]) for both the de Loor–Dobson and
Ap was smaller than expected based on clay content, probably (Tables 1, 6b, and 6c). For the power-law dielectric mixing model (face area (b) distribution coefficient of power-law mixing model exponent (a)), the degrees of freedom).† Residual standard deviation (square root of the sum of squared errors divided by the degrees of freedom).‡ Fitted parameters ± 95% confidence intervals.

The choice of the dielectric mixing model used in the optimizations influenced the magnitude of the fitted specific surface area (Table 6). Optimizations with the power-law model yielded values of $A_s$ that were 1.7 to 2.0 times larger than fits using the de Loor–Dobson model. Assuming specific surface areas of smectite and mica of 800 and 100 m$^2$ g$^{-1}$, respectively (Fanning et al., 1989; Borchardt, 1989), and a clay fraction with no more than 70% smectite, the expected surface areas would range from 100 to 270 m$^2$ g$^{-1}$ for these soils. Hence, either the de Loor–Dobson or power-law (with $a = 0.68$) model fits yield surface area estimates with an acceptable magnitude. The magnitude of the fitted surface area obtained using the power-law mixing model ($a = 0.68$; Table 6b) differed by <10% from the specific surface area determined from the mass of water retained at 54.4% relative humidity (Table 1). We note, however, that whatever means used to obtain the specific surface area, the measured or derived value is subject to some uncertainty. We have assumed that the water retained by clay at 54.4% humidity forms a monomolecular layer ~0.3 nm thick (Newman, 1983; Logsdon, 2005). Based on the work by Quirk and Murray (1999), however, water adsorbed to clay on exterior surfaces of micas and kaolinites may be two layers thick at a relative humidity of 47%. The dielectric mixing model assumes a monomolecular layer of 0.5-nm thickness and that the surface modifies the dielectric properties of water at a maximum distance of 0.75 nm (Table 4). The choice of these physical values will obviously influence the magnitude of the fitted surface area. A caveat for the interpretations of the fitted results is that the surface-induced reduction in viscosity conceptualized by Or and Wraith (1999) and applied to describe bound water effects here is only one of the mechanisms by which clays can restrict the rotational mobility of water molecules. Counterions in the diffuse double layer can also reduce static permittivity by the formation of hydrated shells of water molecules around the ions, with these molecules exhibiting restricted orientational polarizability (Sposito and Prost, 1982; Friedman et al., 2006). These cation-specific effects are not explicitly considered in the physical model and hence, given these uncertainties, the specific surface area $A_s$ should be considered a fitted parameter that depends on the mineralogy of the soil and, to a lesser extent, the charge density and valency of the dominant saturating cations. Because of the consistently lower RSDs obtained for optimizations using the power-law mixing model with $a = 0.68$ (Table 6b), we subsequently examined in more

Table 5. Nonlinear least square results for the apparent permittivity fit for both RG 8 cables using the fitted specific surface area ($A_s$) and the power-law mixing model exponent ($a$). Effective frequency was calculated using Eq. [4] and a distribution coefficient of $\alpha_{CD} = 1$.

<table>
<thead>
<tr>
<th>Soil</th>
<th>RSD†</th>
<th>$A_s$</th>
<th>$a$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m$^2$ g$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Power-law dielectric mixing model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1300</td>
<td>223.5 ± 27.7</td>
<td>0.765 ± 0.042</td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.2047</td>
<td>310.8 ± 31.1</td>
<td>0.981 ± 0.067</td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.0867</td>
<td>209.8 ± 16.5</td>
<td>0.781 ± 0.027</td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.1134</td>
<td>257.3 ± 17.6</td>
<td>0.872 ± 0.030</td>
</tr>
<tr>
<td>(b) Power-law dielectric mixing model, $a = 0.68$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1414</td>
<td>172.8 ± 14.9</td>
<td>0.68</td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.3002</td>
<td>159.6 ± 31.4</td>
<td>0.68</td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.1081</td>
<td>153.1 ± 10.5</td>
<td>0.68</td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.1817</td>
<td>152.1 ± 15.1</td>
<td>0.68</td>
</tr>
<tr>
<td>(c) de Loor–Dobson dielectric mixing model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1831</td>
<td>74.3 ± 13.7</td>
<td></td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.3425</td>
<td>56.0 ± 27.6</td>
<td></td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.1788</td>
<td>43.4 ± 13.0</td>
<td></td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.2802</td>
<td>45.8 ± 17.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Nonlinear least square results for the apparent permittivity fit for both RG 8 cables using the fitted specific surface area ($A_s$), the power-law mixing model exponent ($a$), and an empirical coefficient describing bound water polarization ($\beta$). Effective frequency was calculated using Eq. [5] and a bound water polarization exponent $m = 1$.

<table>
<thead>
<tr>
<th>Soil</th>
<th>RSD†</th>
<th>$A_s$</th>
<th>$a$</th>
<th>$\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m$^2$ g$^{-1}$</td>
<td></td>
<td></td>
<td>m$^3$ m$^{-3}$</td>
</tr>
<tr>
<td>(a) Power-law dielectric mixing model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1125</td>
<td>202.3 ± 49.7</td>
<td>0.588 ± 0.095</td>
<td>22.34 ± 3.87</td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.1650</td>
<td>269.5 ± 115.2</td>
<td>0.645 ± 0.220</td>
<td>28.46 ± 4.20</td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.0827</td>
<td>200.5 ± 30.6</td>
<td>0.682 ± 0.065</td>
<td>17.65 ± 2.93</td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.0858</td>
<td>299.8 ± 23.3</td>
<td>0.823 ± 0.053</td>
<td>19.45 ± 2.22</td>
</tr>
<tr>
<td>(b) Power-law dielectric mixing model, $a = 0.68$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1138</td>
<td>240.7 ± 26.2</td>
<td>0.680</td>
<td>19.49 ± 2.82</td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.1639</td>
<td>286.4 ± 38.1</td>
<td>0.680</td>
<td>27.95 ± 2.54</td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.0822</td>
<td>199.8 ± 15.7</td>
<td>0.680</td>
<td>17.70 ± 2.00</td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.0954</td>
<td>243.2 ± 16.2</td>
<td>0.680</td>
<td>23.39 ± 1.56</td>
</tr>
<tr>
<td>(c) de Loor–Dobson dielectric mixing model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullman Ap</td>
<td>0.1271</td>
<td>135.2 ± 20.5</td>
<td>0.55 ± 0.27</td>
<td></td>
</tr>
<tr>
<td>Pullman Bt</td>
<td>0.1650</td>
<td>164.2 ± 29.6</td>
<td>0.798 ± 0.247</td>
<td></td>
</tr>
<tr>
<td>Richfield Ap</td>
<td>0.0853</td>
<td>102.0 ± 11.0</td>
<td>22.07 ± 1.57</td>
<td></td>
</tr>
<tr>
<td>Richfield Bt</td>
<td>0.1215</td>
<td>126.8 ± 15.4</td>
<td>27.38 ± 1.63</td>
<td></td>
</tr>
</tbody>
</table>

† Residual standard deviation (square root of the sum of squared errors divided by the degrees of freedom).‡ Fitted parameters ± 95% confidence intervals.
detail the apparent permittivity and soil water content predictions using these fitted parameters.

Solving for apparent permittivity using the fitted coefficients of the power-law mixing model (Table 6b) with \( \sigma_0 \) calculated using the parameters given in Table 1 with the expression given by Schwartz et al. (2009, Eq. [21]) and at soil temperatures of 8, 22, and 40°C yielded the fitted \( K_a-\theta \) curves shown in Fig. 4 for the Pullman and Richfield Bt horizons. Also plotted in Fig. 4 are the measured results, which, because of errors in the \( \sigma_0 \) model, exhibited larger deviations from the fitted curves than optimizations with measured \( \sigma_0 \) would indicate. At an input spectrum bandwidth of 2.85 rad GHz (0.454 GHz), the measured results at each temperature are generally well described by the plotted trends. At a bandwidth of 0.80 rad GHz (127 MHz), where curves represent the predicted responses because these data were not included in the optimizations (Table 6b), the measured responses were more scattered about the plotted trends, especially at large water contents and 40°C. In general, the predicted permittivities agreed closely with the measured permittivities up to a maximum bulk electrical conductivity of 0.12 S m\(^{-1}\) and loss tangent of 1.7 for the Pullman Bt Horizon. These losses are associated with a predicted effective frequency of 340 rad MHz (54 MHz). At greater bulk electrical conductivities and correspondingly greater loss tangents, errors in predicted water contents increased up to 0.06 m\(^3\) m\(^{-3}\). Errors at high loss tangents are attributable to the difficulty in estimating the travel time in the presence of significant attenuation and the concomitant decrease in magnitude of the slope of the second reflection (Wraith and Or, 1999).

At a predicted loss tangent of 2.4 (\( \sigma_0 = 0.15 \) S m\(^{-1}\)), the second reflection disappeared altogether for the Pullman Bt horizon at 40°C and near saturation using the 12-m RG 58 cable.

Soils were also calibrated using the empirical relationship between \( \sqrt{K_a} \) and \( \theta \) (Topp and Reynolds, 1998) to fit an intercept (\( b_0 \)) and slope (\( b_1 \)) using linear regression and the measured data from all of the cables (Table 7). Root mean square errors of the predicted water contents for these empirical calibrations were 0.003 to 0.009 m\(^3\) m\(^{-3}\) greater than those obtained for the mixing model calibration (Table 6b). Even though the dielectric mixing model was calibrated only for the RG 8 cables, the RMSEs reported in Table 7 include data from all cables. The trends in measured and predicted soil water contents (Fig. 5) illustrate a significant temperature bias in the empirical calibration. In contrast, a temperature bias was not discerned for the mixing model calibration, although it is evident that soil water contents inferred from permittivity measurements at higher temperatures had greater errors.

Soil water content calibrations were applied to measured temperature, permittivity, and bulk electrical conductivity data in the Ap horizon of the Pullman soil in an instrumented field described by Schwartz et al. (2008). We estimated soil water contents using a measured input spectrum bandwidth \( \omega_S = 2.0 \) rad GHz (0.318 GHz) and assuming a uniform bulk density of 1.35 Mg m\(^{-3}\). Predicted soil water contents at 0.05 and 0.10 m using the square root of permittivity calibration (Table 7) and using the Topp et al. (1980) equation were characteristically in phase with soil temperatures (Fig. 6b). The magnitudes of the water content oscillations for these empirical models were greater for the 0.05-m soil depth and ranged from 0.016 to 0.022 m\(^3\) m\(^{-3}\) during days without precipitation. The Topp et al. (1980) equation underestimated water...
At 0.05 m, diel water content oscillations were reduced to a magnitude <0.02 m$^3$ m$^{-3}$ during days without precipitation (Fig. 6a). Dampening of the water content oscillations enabled the detection of small increases (<0.02 m$^3$ m$^{-3}$) in soil water content attributed to small precipitation events (<10 mm) that were otherwise masked by diel temperature fluctuations (Fig. 6b). In contrast, water contents predicted at 0.05 m using the Evett et al. (2005) calibration exhibited oscillations similar to the square root of permittivity calibration (Fig. 6b) and in phase with temperature fluctuations. At the 0.05-m depth, soil water contents are low and the bulk electrical conductivity of the soil becomes small, which results in a negligible loss term and hence temperature dependencies characteristic of the square root of permittivity calibrations. At these low water contents, temperature dependencies arise out of the change in bound water fraction with temperature, which was not considered in the Evett et al. (2005) equation.

### Recommended Calibration and Field Implementation Procedure

Based on these results, we propose a generalized calibration of soil water contents with respect to apparent permittivities calculated using Eq. [7] in conjunction with either mixing model (Eq. [2] or [3]) and the approximate effective frequency calculation in Eq. [5]. The procedure (Fig. 7) consists of first calibrating the $K_a^{1/2}$ relationship under controlled conditions in the laboratory, after which the calibration is applied to estimate $\theta$ in the field once the physical characteristics of the field setup have been measured. The laboratory calibration should consist of a cable tester, multiplexer, TDR probes with lead coaxial cables of uniform length, and a single primary coaxial cable with a length corresponding to the average length and attenuation rating used in the field. The primary coaxial cable connects the cable tester to the multiplexer and also serves to decrease the signal bandwidth to a value comparable to that achieved in the field. We recommend using good quality coaxial cable such as RG 8 with very low attenuation to minimize errors associated with high-frequency filtering, especially in fine-textured soils. Manufacturer models of the cable tester and multiplexer used in the laboratory calibrations should be equivalent to those deployed in the field. Moreover, all TDR probes are assumed to be geometrically identical.

The laboratory cabling setup is characterized by measuring the air and short-circuit reflection coefficients and probe constant ($K_p$) (Lin et al., 2008) in addition to the bandwidth $\omega_c$ of the TDR signal (Schwartz et al., 2009, Eq. [15]) obtained with an open circuit termination using the lead cable with the TDR probe removed. Use of the Lin et al. (2008) method to adjust the $\sigma_0$ calibration for a range of cable resistances (lengths) is recommended rather than the Castiglione and Shouse (2003) procedure, which has since been shown to be incorrect (Lin et al., 2008). Using packed soil columns prepared to achieve a range of $\theta$ from air dry to near saturation, travel time measurements and final (long-time) reflection coefficients are measured to calculate $K_a^{1/2}(\theta, T)$.
and \(\sigma(0,T)\), respectively, at three equilibration temperatures (\(>4\,^\circ\text{C}\)). The soil temperatures should encompass the range expected in the field and should span at least \(30\,^\circ\text{C}\) to permit a measurable change in bound water. Lastly, for each representative soil horizon, the specific surface area \(A_s\) and polarization loss factor \(p\) are fitted based on the objective function Eq. [8] with predicted permittivities based on the measured \(\theta, T, \sigma_0, \rho_b,\) and \(\omega_c\). If the power-law mixing model is fitted, we recommend using a fixed exponent of \(0.55 < a < 0.70\), which encompasses the experimental range in this work together with Dobson et al. (1985) and Or and Wraith (1999).

The estimation of water contents in the field requires first characterizing the cabling setup by measuring the air and short-circuit reflection coefficients together with the \(\omega_c\) of the TDR signal for each multiplexer with channels occupied by probes. These measurements need to be performed only on a single channel per multiplexer because of the equivalent electrical path lengths for all channels (e.g., Evett, 1998). If coaxial cables between the primary and secondary multiplexers are of similar length and attenuation ratings, then these measurements should be similar in magnitude barring any attenuation caused by moisture, poor contacts, or damaged cable. Once the field setup has been characterized and the soil bulk density has been measured or estimated, field \(\theta\) can be estimated using the iterative method Eq. [9] with temporal measurements of \(K_s, \sigma_0,\) and \(T\) for buried probes in conjunction with the calibration parameters \(A_s\) and \(p\) for each soil horizon.

**SUMMARY AND CONCLUSIONS**

A four-phase complex dielectric mixing model was calibrated to estimate the apparent permittivity of fine-textured soils using measurements of soil water content, bulk electrical conductivity, temperature, and bulk density. The measured apparent permittivitiies were best approximated using the power-law dielectric mixing model with a decoupled, semiempirical effective frequency estimate. The power-law exponent was fixed at 0.68 to avoid nonuniqueness problems associated with its positive correlation with the fitted specific surface area. In general, the predicted surface areas increased with increasing clay contents and measured surface areas. The two-parameter mixing model calibration removed temperature bias in the apparent permittivity estimates and reduced the RMSE in the soil water content predictions by an average of 0.006 m\(^3\) m\(^{-3}\) compared with the empirical square root of permittivity (\(K_s^{1/2}\)) calibration and the Topp et al. (1980) equation, and a calibration that considers bulk electrical conductivity effects proposed by Evett et al. (2005, Table 7, Soil A). Measurements are for the Pullman Ap horizon in an instrumented field described by Schwartz et al. (2008).

Fig. 6. Field-measured (a) precipitation and (c) soil temperature and estimated water contents (\(\theta\)) based on (a) the calibrated (Table 6b) dielectric mixing model, (b) the square root of permittivity (\(K_s^{1/2}\)) calibration and the Topp et al. (1980) equation, and (d) a calibration that considers bulk electrical conductivity effects proposed by Evett et al. (2005, Table 7, Soil A). Measurements are for the Pullman Ap horizon in an instrumented field described by Schwartz et al. (2008).
Establish a coaxial cabling setup with multiplexer for calibration
- Length of cable between cable tester and multiplexer similar to field setup
- Identical lead cable length for all TDR probes

Characterize Laboratory Cabling Setup
- Measure air and short-circuit reflection coefficients
- Determine probe constant \( (K_p) \) by calibration with solutions
- Measure bandwidth \( (\omega_b) \) of calibration setup

Calibration Measurements
- Apparent Permittivity, \( K_a \)
- Temperature, \( T \)
- Bulk EC, \( \sigma_b \)
- Bulk Density, \( \rho_b \)
- Volumetric Water Content, \( \theta \)

Parameter Optimization
- Select desired dielectric mixing model
- Set \( 0.8 < a < 0.7 \) for Power Mixing Model
- Fit surface area \( (A_s) \) and polarization loss factor \( (\rho) \) by minimizing objective function Eq. [8]

Calibration parameters \( [A_s, \rho, K_p] \)

Field Implementation
- One-time measurements:
  - Air and short circuit reflection coefficients for each multiplexer
  - Bandwidth \( (\omega_b) \) for each multiplexer
  - Soil bulk density, \( \rho_b \)
- Temporal measurements:
  - Permittivity \( (K_a) \), bulk EC \( (\sigma_b) \), and soil temperature \( (T) \)
- Calculate soil volumetric water content \( \theta \) using the iterative solution, Eq. [9]

![Fig. 7. Flow chart detailing the generalized calibration procedure and field implementation of the complex permittivity model for soil water content sensing.](image)

of the slope of the response of apparent permittivity to temperature depends on the interdependent effects of the relaxation times for bulk and bound water as well as the magnitude of the bulk electrical conductivity. Such a multifaceted temperature response is not easily accommodated using purely empirical expressions.

The dielectric mixing model calibration was evaluated under field conditions during periods of significant temperature fluctuations and small precipitation events. Empirical models predicted water contents with dielectric oscillations in phase with measured soil temperatures. In contrast, the mixing model removed in-phase fluctuations at 0.1 m and dampened these oscillations to \(<0.004 \text{ m}^{-3} \) at the 0.05-m soil depth. Dampening of the temperature-induced oscillations in water content permitted the detection of small \(<0.02 \text{ m}^{-3} \) increases in soil water content attributed to small precipitation events.

**ACKNOWLEDGMENTS**
We gratefully acknowledge Sally Logsdon and Guy Serbin for the helpful exchanges and reviews of an earlier version of this manuscript. Alan Schlegel kindly provided samples of the Richfield loam for use in the study. In addition, special thanks are extended to Amanda McCarthy for her assistance in the laboratory and with waveform collection.

**REFERENCES**


Greenspan, L. 1977. Humidity fixed points of binary saturated aqueous
Heimovaara, T.J. 1993. Design of triple-wire time domain reflectometry
analysis of time domain reflectometry waveforms: 2. A four-component
monitoring of soil moisture in a remote field area with time domain
the accuracy and uncertainty of water content measurements. Soil Sci.
of kaolinite, montmorillonite, allophane, and imogolite under moist
domain reflectometry for soil water measurement including effects of
Kahimba, F.C., and R.S. Ranjan. 2007. Soil temperature correction of field
TDR readings obtained under near freezing conditions. Can. Biosyst.
Raton, FL.
Kellners, T.J., R.W.O. Soppe, D.A. Robinson, M.G. Schaap, J.E. Ayars,
of measuring soil moisture by time-domain reflectometry. J. Hydrol.
88:319–328.
calibration of reflection coefficient for electrical conductivity measurement
Logsdon, S.D. 2000. Effect of cable length on time domain reflectometry
Logsdon, S.D. 2005. Time domain reflectometry range of accuracy for high
Logsdon, S.D. 2006. Experimental limitations of time domain reflectometry
Malicki, M.A., R. Plagge, and C.H. Roth. 1996. Improving the calibration of
dielectric TDR soil moisture determination taking into account the solid
Mironov, V.L., M.C. Dobson, V.H. Kaupp, S.A. Komarov, and V.N.
Newman, A.C.D. 1983. The specific surface of soils determined by water
Or, D., and J.M. Wraith. 1999. Temperature effects on soil bulk dielectric
permittivity measured by time domain reflectometry: A physical model.
Topp (ed.) Methods of soil analysis. Part 4. Physical methods. SSSA
Book Ser. 5. SSSA, Madison, WI.
measurement errors in time domain reflectometry determinations of soil
effects on temperature dependency in time domain reflectometry. Soil Sci.
Numerical recipes in FORTRAN: The art of scientific computing, 2nd
cambridge Univ. Press, New York.
er ether method for measuring hydreadable surface area of clays and soils.
Robinson, D.A. 2004. Measurement of the solid dielectric permittivity of
clay minerals and granular samples using time domain reflectometry
immersion method. Vadose Zone J. 3:705–713.
review of advances in dielectric and electrical conductivity measurement
in soils using time domain reflectometry. Vadose Zone J. 2:444–475.
domain reflectometry for water content measurements using a composite
balance components using an iterative procedure. Vadose Zone J. 7:115–123.
dielectric permittivity model for time domain reflectometry soil water content
Surv. Lab., Natl. Soil Surv. Ctr., Lincoln, NE.
Chem. Rev. 82:553–573.
GenCorp Aerojet, Azusa, CA.
of soil water content: Measurements in coaxial transmission lines. Water
Resour. Res. 16:574–582.
technique for measuring mass and energy in soil. Soil Tillage
Wraith, J.M., and D. Or. 1999. Temperature effects on soil bulk dielectric
permittivity measured by time domain reflectometry: Experimental