ANNUAL REPORT OF THE

BEAN IMPROVEMENT
COOPERATIVE

A VOLUNTARY AND INFORMAL ORGANIZATION
TO EFFECT THE EXCHANGE OF INFORMATION AND MATERIALS

Volume 28
1985
The XXVIII
Report of the
BEAN IMPROVEMENT COOPERATIVE

No. 28 March 1985

Coordinating Committee

D. P. Coyne J. R. Steadman
D. Mok S. R. Temple
A. W. Saettler D. H. Wallace
M. J. Silbernagel J. Wyatt

M. H. Dickson (Chairman)

Please address correspondence about BIC membership and BIC annual reports to:
Michael H. Dickson, Department of Horticultural Sciences
New York State Agricultural Experiment Station
Geneva, NY 14456, USA

NOTE: It will be assumed that interested individuals may freely cite (including author credit) any report note in this BIC report, unless the author indicates to the contrary. As a professional courtesy, individuals citing BIC notes should notify the authors of his or her intentions. The Coordinating Committee approved this statement at the BIC meeting on November 5, 1975.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>XXVII ANNUAL REPORT OF THE BEAN IMPROVEMENT COOPERATIVE</td>
</tr>
<tr>
<td>ii</td>
<td>1985 BIC MEETING IN OREGON</td>
</tr>
<tr>
<td>ii</td>
<td>CIAT BOOK UPDATE - BEAN PRODUCTION PROBLEMS</td>
</tr>
<tr>
<td>iii</td>
<td>CALL FOR NOMINATIONS - BIC MERITORIOUS SERVICE AWARDS</td>
</tr>
<tr>
<td>iii</td>
<td>HONORS</td>
</tr>
<tr>
<td>iv</td>
<td>BEANS OF NEW YORK</td>
</tr>
<tr>
<td></td>
<td>PROGRESS REPORT OF THE NATIONAL COOPERATIVE DRY BEAN NURSERY</td>
</tr>
</tbody>
</table>

RESEARCH REPORTS

Interaction of genetic resistance to Fusarium root rot with cultural practices in a white-seeded bush snap bean. M. J. Silbernagel and T. J. Doyle

Effectiveness of vegetable oils in protecting beans against Mexican bean weevil (Zabrotes subfasciatus Bohman). B. A. Kiula and A. K. Karel

Yield losses in dry bean (Phaseolus vulgaris L.) caused by angular leaf spot (Isariopsis grisela Sacc). C.A.R. Seijas, A. Sartorato, and J. R. Porto de Carvalho

The incidence and severity of the major diseases of beans in Uganda. T. N. Sengooba

Integrated pest management on beans in East Africa. A. K. Karel

Integrated pest control in common beans, Phaseolus vulgaris, in Tanzania. A. K. Karel

Host-plant resistance in common beans to foliar beetle (Ootheca bennigseni Weise). A. K. Karel

Evaluation of common bean cultivars for resistance to bean fly Ophiomyia phaseoli Tryon. A. K. Karel and A. P. Maerere

The effect of fungicide formulation, rate, and timing in control of bean rust in southwest Nebraska. D. T. Lindgren and J. R. Steadman

Races of the bean rust fungus, Uromyces appendiculatus var. appendiculatus, from Jamaica. M. Shaik

The use of a field scoring system to evaluate the relationship between plant architecture and white mold in dry beans. C. L. Campbell, J. R. Steadman, and D. P. Coyne

Evaluation of white mold reaction in a Nebraska dry bean nursery. C. L. Campbell and J. R. Steadman

Measurement and interpretation of leaf wetness in a bean crop. A. Weiss, D. L. Lukens, and J. R. Steadman

An approach to control of bean golden mosaic virus in dry beans Phaseolus vulgaris L. A. Sartorato and C.A.R. Seijas

Vigor of snap bean seeds: Relationship of laboratory tests to field emergence. A. G. Taylor, C. Samimy, and T. J. Kenny

Trypsin activity on globulins and albumins from common bean seeds Phaseolus vulgaris L.). H. Y. Hernandez-Unzon and M. L. Ortega-Delgado

The modified Cobb scale for estimating bean rust intensity. J. R. Stavel

Virulence of the soybean rust pathogen, Phakopsora pachyrhizi, on Phaseolus vulgaris cultivars. J. R. Stavely, J. L. Rytter, and M. H. Royer .. 35
Bean variety, bean portion, and growth response of mice and rats. R.E.W. Birch and B. G. Swanson ... 39
Bean rust in the United States in 1984. J. R. Stavely ... 40
Influence of procyanidins on the gastrointestinal tract of the rat. B. J. Sendzicki and B. G. Swanson ... 42
Protein quality of soybean, red bean and corn tempeh. A. Rasyid and B. G. Swanson .. 44
Reaction of purple-podded bean cultivars to viruses. E. M. Chirco and R. Provvidenti .. 45
Genetic variability in bean landraces of northern Malawi. G. B. Martin and M. W. Adams ... 47
The role of outcrossing in the generation of variability in Malawian bean landraces. G. B. Martin and M. W. Adams 49
Yield potential and drought susceptibility. C. Samper and M. W. Adams .. 51
Geometric mean of stress and control yield as a selection criterion for drought tolerance. C. Samper and M. W. Adams 53
The inheritance and association of resistance to bean rust (Uromyces phaseoli) and common blight (Xanthomonas campestris pv. phaseoli) in dry beans (Phaseolus vulgaris L.). M. L. Finke, D. P. Coyne, J. R. Steadman, and A. K. Vidaver .. 55
Wax deposition patterns and inheritance of seed-coat whiteness in beans (Phaseolus vulgaris L.). D. P. Coyne, E. T. Paparozzi, T. Behre, and S. S. Korban .. 57
Effect of date of planting on seed coat cracking, adhesion and internal morphology of seed coat to cotyledon of dry beans (Phaseolus vulgaris). J. E. Bailie, D. P. Coyne, E. T. Paparozzi, and M. A. Hanna .. 58
Usefulness of phaseolin as an evolutionary marker. P. Gepts and F. A. Bliss .. 60
Geographic distribution of F1 hybrid weakness inducing genes suggesting the existence of gene pools in cultivated common bean. P. Gepts and F. A. Bliss .. 62
Interspecific hybridizations within the Phaseolus vulgaris L. – Phaseolus coccineus L. complex. J. P. Baudoin, R. Marechal, E. Otoul, and F. Camarena .. 64
A breeding programme with the interspecific hybrids between Phaseolus vulgaris L. and Phaseolus acutifolius A. Gray. J. P. Baudoin, E. Lewinson, R. Marechal and E. Otoul .. 66
Interspecific hybridizations with Phaseolus lunatus L. and some related wild species. J. P. Baudoin, K. Katanga, R. Marecha, and E. Otoul .. 67
Gembloux base collection of wild and botanical forms of Phaseolinae. R. Marechal and J. P. Baudoin .. 69
The effect of inoculation methods, pathogenic variability and inoculum concentrations on reactions and genetics of resistance to isolates of Xanthomonas campestris p.v. phaseoli in leaves and pods of dry beans (Phaseolus vulgaris) L. H. Leyna and D. P. Coyne .. 70
Tempeh fermentation and protein quality of beans (Phaseolus vulgaris). R.E.W. Birch and B. G. Swanson .. 72
Apparent immunity to two virus strains in Phaseolus lunatus and P. metcalfiei. E. Jimenez-Garcia and R. Buhrow .. 73
The prospects for dry Phaseolus bean production in Britain. N. W. Galway .. 74
A dual screening technique for halo blight and bean common mosaic virus in beans. L. J. Mills and M. J. Silbernagel.................. 76

Reactions of commercial dry bean cultivars and lines to Michigan isolate 5 of Isariopsis griseola. A. W. Saettler and F. J. Correa... 78

Genetics of resistance of Malawian halo blight isolates. J. D. Kelly, W.A.B. Msuku, and A. W. Saettler................................. 80

Genomic analysis of phytohemagglutinin-deficient Phaseolus vulgaris cultivars. R. Bollini, A. Allavena, and A. Vitale.................. 82

Phytohemagglutinin genes and polypeptides in Phaseolus vulgaris L. cv. Pinto III seeds. A. Vitale and R. Bollini..................... 83

Influence of age at transplanting on seed yield of a pole bean (Phaseolus vulgaris L.) J. Alberto, S. Escalante-Estrada and J. Kohashi-Shibata 84

Callose in flower buds, flowers and young pods of high and low potential for abscission in Phaseolus vulgaris L. P. Yanez-Jimenez, J. Kohashi-Shibata, and E. M. Engleman.............. 86

Detection of a linkage between white flower color and EST-2 in common bean. N. F. Weeden and C. Y. Liang.......................... 87

The influence of O3-SO2 on the growth response of Phaseolus vulgaris. R. Joyner, J. Dunning, R. Reinert, and M. Rangappa............. 89

Infection of Phaseolus vulgaris with strains of Agrobacterium tumefaciens and A. rhizogenes. A. Allavena....................... 90

A new index to select parental lines in common beans. J. A. Mosjidis and J. G. Waines... 92

A "leafless" variant of Phaseolus vulgaris L. J. J. Kolar................ 93

Breeding lines of Phaseolus vulgaris with typical red node symptoms. J. J. Kolar... 94

Soil water use by relay-cropped and mono-cropped bean (Phaseolus vulgaris L. C. M. Guimaraes, R. F. Vieira, and T. de A. Portes........ 94

Variability in response of blossoms of different bean genotypes to infection by Sclerotinia sclerotiorum. M. E. Lyons, M. H. Dickson, and J. E. Hunter....................... 96

Tests for drought tolerance in common beans. J. Mosjidis and J. E. Waines.. 98

Response of bean (Phaseolus vulgaris L.) to bovine biofertilization on Cerrado soil. T. P. de Oliveira, J.A.A. Moreira, and M. Soares 101

Southern cooperative snap bean variety trials-1984. C. A. Mullins... 102

Breeding for cold tolerance in beans. M. H. Dickson and R. Thode... 103

Germplasm screening for nitrogen fixation. R. Redden, L. Diatloff, and T. Usher.. 104

Differences in the genetic background of resistance to Pseudomonas Phaseolicola observed after inoculation by Xanthomonas phaseoli in phaseolus vulgaris. I. Velich, J. Szarka, and N. D. Luong........ 105

Breeding for heat tolerance in beans. M. H. Dickson and R. Thode... 105

Effect of crop rotation on snap bean production. C. A. Mullins.... 107

Evaluation of fungicides for control of snap bean rust in Tennessee. C. A. Mullins and J. W. Hilty............................. 109

Evaluation of herbicide treatments for no-till snap bean production. C. A. Mullins.. 111

Phenotypical examination of seed gene frequencies in bulked samples collected from Transsylvania corn fields. A. T. Szabo.............. 114

Response of beans to green manure. O. T. Edje.......................... 116
THE XXVIII ANNUAL REPORT

of the
Bean Improvement Cooperative

The BIC meetings will be held in Portland, Oregon, and I hope many of you will be able to attend. Drs. Mok and Baggett have made excellent arrangements for us and could probably lay on some steelhead fishing if requested.

We will publish the proceedings of the papers presented at the meeting in the 1986 BIC Annual Report, This way they go to all the membership and libraries and are easier to quote.

Amy Dunham is now helping with the bookkeeping related to the BIC memberships, but Fran Van Kirk will continue to help with assembling the Annual Report. I would like to thank them for their good help.

You will notice that we do not have a bibliography. It has become increasingly hard to get people willing to prepare the bibliographies, plus the report continues to grow larger each year. Now that there are good bean abstracts prepared by CIAT it is not so important to include them in the BIC report. I would like to thank those who have prepared the bibliographies over the years.

I wish to thank Dr. Don Hagedorn for serving on the BIC Coordinating Committee for the past seven years and to welcome Dr. David Mok to the committee.

Michael H. Dickson
for the Coordinating Committee
X X
X 1985 BIC Meeting in Oregon X
X
X
X
The 1985 BIC meeting will be held at the Red Lion X
X Inn at Lloyd Center in Portland, Oregon 97208. The BIC X
X program will be on November 5th and 6th and the NDBG X
X program will run concurrently with the Pea Improvement X
X Association on November 7. The prices are $55 (single) X
X and $60 (twin/double) per night. Limousine service is X
X available from the airport.

Make your room reservations directly with the Red X
X Lion Inn, identifying that you will be attending the X
X BIC meeting so that you obtain the group rate.

In July all BIC members will receive a call for X
X titles of papers and advanced registration information.

Arrangements are being handled by Dr. David Mok X
X (phone 503-754-3695) and Dr. Jim Baggett (phone X
X 503-754-3175), Department of Horticulture, Oregon State X
X University, Corvallis, OR 97331.

CIAT Book Update - Bean Production Problems

CIAT is planning to update and expand its 1980 review (English and Spanish) entitled, "Bean Production Problems: Disease, Insect, Soil and Climatic Constraints of Phaseolus vulgaris". Drs. H.F. Schwartz, M. Pastor Corrales and G.E. Galvez will edit the new version, and solicit your assistance in receiving pertinent reprints on bean production problems published since 1979. Please send copies of these reprints and suggestions for improved color illustrations to: Dr. Howard F. Schwartz, Dept. of Plant Pathology & Weed Science, Colorado State University, Fort Collins, Colorado 80523 U.S.A.
Call for Nominations for the BIC Meritorious Service Awards

The BIC membership is reminded that they should make nominations for the meritorious service award not later than July 1, 1985--to be sent to Dr. Donald Hagedorn, Department of Plant Pathology, University of Wisconsin, Madison, WI 53706. Awards are made for "an outstanding single accomplishment or substantial high performance over a period of years". The nominations should be accompanied by a summary statement of approximately one typewritten page giving place of birth, academic background, and accomplishments.

BIC Awards Committee
George Emery
Howard Schwartz
Roger Sandsted
Donald Hagedorn, Chairman

HONORS

Dr. Dermot P. Coyne, Professor of Horticulture, University of Nebraska, Lincoln, Nebraska, was elected President of the American Society of Horticultural Science at the annual meeting of the society in Vancouver, BC. Dr. Coyne received this honor for his active participation in the Society and we wish him well during his presidency. We will also welcome him back to active bean research when his year is completed.

Beans of New York

The classic volumes on fruits and vegetable of New York were published in the 30's. This included the volume on Beans of New York which illustrates and gives the parentage and background of many old bean cultivars. Copies are available on request from M. H. Dickson, Department of Horticultural Sciences, New York State Agricultural Experiment Station, Geneva, NY 14456.
The National Cooperative Dry Bean Nursery (CDBN) has been operative for 35 years and has grown steadily since its beginning. Originally, a few entries were grown at 8 to 10 locations with minimal data on maturity, seed size, and yield. During recent years up to 45 entries have been grown at 20 to 25 locations in the U.S. and Canada. More complete data of plant characteristics, disease reaction, harvest index, seed quality, and other attributes, has also been accumulated, thus providing more factual information to determine overall worth. Today's cooperators include breeders from both private companies and public agencies working with all major market classes of dry beans. The primary objective of the nursery is to provide breeders a means of comparing the performance of their advanced lines with those of other breeders and standard varieties. Test sites range from southern Canada to California and Arizona and include all major dry bean production areas except New York. This wide array of climates, diseases, and other environmental conditions provide an excellent evaluation of the overall adaptability of bean genotypes as well as identifying specific areas of adaptability and reactions to diseases not prevalent in the developmental area.

The mechanism for data generation is relatively simple. Breeders wishing to enter lines in the regional tests contact the coordinator, who will take the request under consideration providing that too many entries have not already been received. The breeder must also be able to furnish 30 to 60 pounds of seed, depending upon seed size, which is sent to the coordinator for distribution. This seed must be free of diseases (especially bacterial diseases) and must pass serological tests if it is to be planted in Idaho, Washington, and other states having quarantines. Each breeder who enters the test is requested to grow the nursery and collect performance data. These data are sent to the coordinator after harvest, who summarizes the results. These summaries are then distributed to all cooperators as well as others who have interest in the information.

A recent review of past CDBN reports has shown that nearly 50 new varieties were released in the past ten years that had been tested in the CDBN as experimental lines. I am convinced that the data generated by the CDBN was very influential in determining whether or not the entry would merit release as a new variety.

Bean Improvement Cooperative

Financial Statement

Balance on hand, March 30, 1984 $1900.19

Income

Dues collected 1894.00

From annual meeting for printing & mailing proceedings 565.17

Expenses

Printing 1109.93

Postage & duplicating 698.18

Typing 400.00

Balance on hand, March 6, 1985 $2151.25