INTRODUCTION

In 1939 Huyskes (4) \(^2\) described two types of symptoms, which he attributed to adverse soil-moisture conditions, on diseased sugar beets (Beta vulgaris L.) in the valley of the Río Negro in Argentina. The symptoms, however, are not those that ordinarily result from deficiency or excess of water, and additional evidence now available indicates that the trouble is not due to water relations or to other environmental conditions such as soil deficiencies, salt accumulation, or climatic factors.

In Argentina, the disease was studied by the junior author from 1938 through 1941, and in January and February 1941 it was observed by the senior author, who later made studies of diseased material brought from Argentina and placed in the quarantine greenhouses at Arlington, Va. The results of these joint studies are reported here.

HISTORY OF THE DISEASE

Sugar beets have been grown experimentally in a number of localities in Argentina to test the crop for suitability as an additional source of sugar in that country. In two localities factories were constructed and attempts made to establish a beet-sugar industry.

The first factory began operations in 1929 in the valley of the lower Río Negro about 80 miles from the Atlantic coast. This area has a fertile soil, an abundant supply of water for irrigation, and a favorable climate for production of sugar beets. From the beginning, however, yields were low and varied considerably from year to year, as shown by the yield data (table 1) taken from the records of the factory of the Compañía Industrial Agrícola "San Lorenzo" Lda. It is now reasonably certain that these low fluctuating yields were due largely to a disease that caused yellowing, wilting, and complete collapse of the plants usually after they were well advanced toward maturity. Because of these characteristic symptoms, the disease is here designated "yellow wilt."

1 Received for publication January 7, 1944.
2 The authors are greatly indebted to G. H. Coons, principal pathologist, Division of Sugar Plant Investigations, for helpful suggestions during the course of the studies here presented and for making many of the notes on diseased plants in the studies conducted in the quarantine greenhouses at the Arlington Experiment Farm, Arlington, Va.
3 Italic numbers in parentheses refer to Literature Cited, p. 64.
The origin of yellow wilt is unknown, but there is evidence that it occurred in the Territory of Río Negro prior to the establishment of the factory, since Henderson (2) reported that a disease that caused sudden wilting and death of plants destroyed all the experimental plantings of sugar beets at the Experiment Station of Río Negro, near General Roca, in 1926–27.

In 1937–38 and 1938–39 yellow wilt reached a peak of severity in the plantings of the Río Negro Valley and was responsible for almost complete loss of the crop. It caused serious injury also in small plantings in the valley of the Río Colorado about 90 miles to the north. In 1939–40 and 1940–41 sugar beets were grown in Río Negro only on an experimental scale, and in 1941 sugar-beet culture in this area was discontinued.

A second factory was built in the Province of San Juan and abandoned a few years later. Little information is available regarding the cause for the discontinuance of this factory, but it seems probable that a disease problem contributed to its failure.

Table 1.—Sugar-beet yields on the land of the Compañía Industrial Agrícola “San Lorenzo” Lda. in the lower Río Negro Valley of Argentina, 1928–40

<table>
<thead>
<tr>
<th>Season</th>
<th>Area cropped to sugar beets</th>
<th>Total yield</th>
<th>Yield per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planted (Hectares)</td>
<td>Harvested (Hectares)</td>
<td>Kilograms</td>
</tr>
<tr>
<td>1928–29</td>
<td>311</td>
<td>2,879,600</td>
<td>500,000</td>
</tr>
<tr>
<td>1929–30</td>
<td>436</td>
<td>3,406,230</td>
<td>733,280</td>
</tr>
<tr>
<td>1930–31</td>
<td>199</td>
<td>3,204,070</td>
<td>2,071,400</td>
</tr>
<tr>
<td>1931–32</td>
<td>193</td>
<td>1,199,685</td>
<td>1,199,685</td>
</tr>
<tr>
<td>1932–33</td>
<td>205</td>
<td>2,625,395</td>
<td>1,265,395</td>
</tr>
<tr>
<td>1933–34</td>
<td>257</td>
<td>1,008,180</td>
<td>1,008,180</td>
</tr>
<tr>
<td>1934–35</td>
<td>232</td>
<td>3,340,290</td>
<td>3,340,290</td>
</tr>
<tr>
<td>1935–36</td>
<td>235</td>
<td>3,204,070</td>
<td>3,204,070</td>
</tr>
<tr>
<td>1936–37</td>
<td>285</td>
<td>2,071,400</td>
<td>2,071,400</td>
</tr>
<tr>
<td>1937–38</td>
<td>209</td>
<td>1,199,685</td>
<td>1,199,685</td>
</tr>
<tr>
<td>1938–39</td>
<td>285</td>
<td>815,909</td>
<td>815,909</td>
</tr>
<tr>
<td>1939–40</td>
<td>52</td>
<td>199,860</td>
<td>199,860</td>
</tr>
</tbody>
</table>

HOST RANGE

In the valley of the Río Negro yellow wilt has been important chiefly as a disease of sugar beets. Limited evidence indicates that it is capable of causing severe injury also on red garden beets (*Beta vulgaris*) and Swiss chard (*B. vulgaris* var. *cicla* L.). Red garden beets found in fields of sugar beets, and other plants that may have been hybrids between these and sugar beets, appeared to be as susceptible to the disease as the adjacent sugar beets. Late in December 1940, one short row of Swiss chard in a garden near plantings of sugar beets began to be severely affected by what appeared to be yellow wilt, and by the early part of the following February all the plants were either severely affected or dead.

An unidentified species of *Chenopodium* and *C. album* L., both growing more or less abundantly in fields of diseased sugar beets, showed no evidence of infection; nor were plantings of potatoes (*Solanum tuberosum* L.) and tomatoes (*Lycopersicon esculentum* Mill.) in the vicinity of diseased beet plantings affected.
SYMPTOMS

SYMPTOMS IN THE FIELD

In 1940-41 yellow wilt was very severe in plantings of sugar beets near Conesa in the lower Río Negro Valley. The almost complete destruction of the early plantings is illustrated in figure 1. As in the two previous seasons, two rather distinct types of symptoms were produced. One type was characterized by yellowing and stunting of the plants and the other by rapid wilting of apparently normal plants, often followed by death within a few days. The conditions characterized by the two types of symptoms are designated as the "yellows phase" and the "wilt phase" of the disease, respectively.

YELLOWS PHASE

In 1940 yellowed plants were first observed in plantings in the lower Río Negro Valley about the middle of November. In mid-January 1941 most of the diseased plants were stunted and yellow. The leaves appeared to be somewhat thickened and brittle and were usually rolled or partly folded inward. Some of the outer leaves were dead, and others were scorched along the edges and between the larger veins. The inner leaves had a tendency to assume a position approaching the vertical (fig. 2, A), and the edges of the blades were wavy and often irregular.
FIGURE 2.—A. Sugar-beet plants showing the yellows phase of yellow wilt. Leaves are yellow, are usually rolled, brittle, and necrotic, and have a tendency to assume a vertical position. B. Healthy (a), wilted (b), and yellowed (c) plants. Note the beginning of small shoots from axillary buds in c. C. Plants showing early stages of the wilt phase.
On the half-grown and larger leaves of some of the plants, the larger veins and some of the smaller ones were so yellow that the vein pattern was clearly evident. In a few instances this vein yellowing was restricted to the leaves on one side of the plant and sometimes to one side or to the basal portion of one or more leaves. The yellowed areas were somewhat broader than the veins themselves. Yellowing was not in all cases continuous along the veins but sometimes occurred in broken lines. On the majority of affected plants, however, vein yellowing was not conspicuous. No evidence of vein clearing or yellowing was observed on the very young leaves of affected plants.

Many of the yellowed plants were still in reasonably good condition the early part of February, and those that continued to grow showed a tendency toward stimulation of growth of axillary buds. The development of axillary buds was not great in any case, however, and the main shoot continued to be dominant. Some of the plants had a slightly rosetted or bunchy appearance.

The roots of diseased plants were smaller than those of healthy plants and were tough and woody. In some cases the tip of the main root died and lateral roots developed. In other instances the tips were flaccid or had begun to dry and rot. In a few instances no external evidence of root deterioration was observed. In all cases there were many dead rootlets, and in most cases there was evidence, from the decidedly tufted appearance of the lines of sutures along which rootlets had been produced, that successive growths of rootlets had been killed.

Besides being woody, the roots of diseased plants, when sectioned transversely or longitudinally, showed dark flecks in the region of the vascular bundles. In more advanced stages of the disease the amount of discolored tissue was much greater. There was no evidence that the phloem was affected more than other tissues. In the earlier stages of injury darkened flecks were noted in the parenchyma just outside the vascular bundles. It is uncertain how much of the discoloration of the tissues in the later stages of disease was due to the disease and how much was caused by secondary agents.

Wilt Phase

In addition to the complex of symptoms just described, a second type of disturbance began to appear conspicuously about the second week in January, and thereafter few of the plants that became diseased developed the type of symptoms that were fully characteristic of the yellowed plants observed earlier in the season.

The plants that became diseased after the middle of January were characterized principally by rapid wilting, scorching of mature leaves, and death. Usually large plants with roots 1 to 3 inches in diameter were affected. Frequently large vigorous plants began to wilt about midday, and by late afternoon the leaves had drooped markedly, as shown in figure 2, C. The plants recovered somewhat during the night, but the following day they usually wilted so much that the larger leaves lay flat on the ground and did not again fully recover turgidity. By the third or fourth day the older leaves began to burn
and dry, and within a week most of the mature leaves were dead or nearly so. The rapid progress of this phase of the disease is illustrated in figure 3.

In some affected plants, the small central leaves recovered somewhat after the death of the older leaves and again assumed an up-right position. In such plants, some additional growth was produced but the leaves were thick, folded, and greenish yellow sometimes slightly tinged with purple. Such yellowish tufts of leaves lived until root disintegration was well advanced. In many cases, however, the wilted plants died without producing any appreciable additional growth (fig. 4).
Plants dug when the tops displayed the first symptoms of wilt showed no evidence of injury in any part of the main root. However, many of the rootlets were dead or beginning to turn brown, but in all cases some appeared to be normal. There was no evidence of an abnormally large number of rootlets, such as was found on the yellowed plants.

In later stages of wilting, damage to the root was clearly evident. Three or four days after the tops started to wilt, the tips of the roots became flaccid and began to shrivel; and decay soon developed. In this stage the top part of the root was still turgid, but the tissue cut easily with a sharp knife and had lost much of its crispness. The wilting and shriveling, which began in the distal end of the root, gradually extended in the direction of the crown until the entire root was involved. This process sometimes required no more than 1 to 2 weeks. In the later stages, the beets were so shrunken that they could easily be pulled out of the soil, leaving the holes they had formerly occupied clearly outlined. No well-defined discoloration or necrosis of the root tissue could be found prior to the beginning of wilting and shriveling.

In some of the wilted plants the progress of the disease was not so rapid as that just described. Outer leaves wilted, dropped to the ground, and died. The remaining leaves became more upright in appearance and turned yellow or yellowish green. Such plants continued to grow slowly, and there was indication that they might
live for considerable periods. In general appearance they were more or less intermediate between plants showing typical yellows phase and those showing typical wilt phase. In some of the plants of this type a small amount of development of lateral buds was noted, and in a few plants a type of vein yellowing was observed.

Figure 5.—A, Sugar-beet plant inoculated by grafting with a plug from a wilted plant, placed in a pot in the greenhouse March 22, and photographed June 12, 1941; the plant shows general yellowing of foliage and early stage of development of shoots from axillary buds. B, Sugar-beet plant showing advanced stage of yellow wilt under greenhouse conditions; the central shoot has lost its dominance, and the shoots from axillary buds have developed into a type of witches'-broom; the older leaves are yellow and necrotic. C and D, Healthy control plants.

SYMPTOMS UNDER GREENHOUSE CONDITIONS

Diseased plants grown in the greenhouse probably showed symptoms more nearly typical of those that the disease is capable of producing under-conditions most favorable for development of infected plants.
The first evidence of disease was the stimulation of growth in the axillary buds. These buds soon developed into small shoots having many small leaves with relatively long petioles and short, malformed, yellow blades. The central shoot also produced small, malformed, yellow leaves, and soon the older leaves began to take on a more or less leathery appearance and turn yellow. Figure 5, A, shows an early stage of the disease, and figure 5, B, a more advanced stage.

Yellowing of veins and leaf malformation (fig. 6) were much more common on plants in the greenhouse than on those in the field. As in the field, some leaves of greenhouse plants were found in which the vein yellowing was present in only part of the leaf area.

The wilt phase of the disease did not develop in the greenhouse; plants selected in the field as showing early stages of wilt and those infected by grafts from such plants produced only the yellows phase of the disease.

TRANSMISSION OF THE DISEASE

There is considerable evidence that yellow wilt is not transmitted through the soil or by direct contact between diseased and healthy plants in the field or in the greenhouse. In the field many cases were observed where, in thinning, two sugar beets had been left in close contact; in a number of instances it was found that one of these plants was diseased whereas the other was healthy and continued to be free of disease for at least 4 weeks.
In further tests, diseased sugar-beet plants from the field were placed in pots in the greenhouse and at the same time healthy seedlings were placed in each pot and left to grow along with the diseased

Figure 7.—A, Sugar-beet plants still healthy after being grown for 2 months in pots with diseased plants; B, sugar-beet plant infected by the yellow wilt virus by means of a graft; C, healthy control.

individuals. Figure 7, A, shows two such healthy plants after they had grown in close contact with diseased plants for more than 2 months. Several of these seedling plants were kept in pots with
diseased sugar beets for more than 4 months, and all remained healthy.

TRANSMISSION BY GRAFT

Two methods of inducing union between diseased and healthy tissue were used in attempts to transmit yellow wilt by graft. In the first method, plugs of tissue about 2 cm. long and 8 mm. in diameter were removed from the root of diseased plants by means of a cork borer. These plugs were inserted into holes made in the crowns of healthy beets by a cork borer one size smaller than that used for removing the plugs from the diseased root. In the second method, V-shaped slabs were removed from the crowns of diseased roots and inserted in slits made in the crowns of healthy roots. The infected tissue was then bound firmly in place with strips of cloth. In some cases, the grafted beets were placed in sphagnum moss and subjected to low temperatures for a period before being potted; in other cases the grafted roots were potted immediately after they were grafted.

In the first test, plants showing no symptoms of disease were selected in the fields near Conesa, Argentina, February 3, 1941, and taken to Buenos Aires. Ten of these plants were grafted by means of plugs from diseased plants that showed the yellows phase of the disease; 11 were grafted by means of plugs from roots that showed the wilt phase of the disease; and 9 were held as checks. The roots were placed in sawdust in cold storage until March 21, when they arrived in New York, N. Y. They were then taken to Arlington, Va., and transplanted to pots in quarantine greenhouses.

Since these plants were selected in fields where the disease was prevalent, it was expected that some of the plants retained as checks might show disease. Of the 9 check plants, 3 showed disease from the beginning of growth after being transplanted; the 6 other plants remained healthy until discarded several months later. Of the 21 plants inoculated by graft, 11 became diseased, and 10 remained healthy. Of those that became diseased, 2 showed disease from the beginning of growth, possibly indicating that they were infected in the field, and 9 first produced normal leaves and later developed disease. One of these plants showed first symptoms on July 30, nearly 6 months after it was grafted and 4 months after it was placed in the greenhouse. Of the 11 plants that became diseased, the plug of diseased tissue was alive in 9 and dead in 2 on June 9; of the 10 that failed to develop disease, the plug was dead in 9 and alive in 1. These results indicate that the disease was transmitted by the grafts in most of the cases where the grafts were alive on June 9.

There were no differences in symptoms on the diseased plants of the three groups. The wilt phase of the disease did not appear, and the production of axillary shoots was characteristic and more pronounced than under field conditions.

With diseased sugar beets from Argentina, as well as beets infected by graft, as sources of inoculum, nine other tests for graft transmission of yellow wilt were made with plants grown in the United States. The results of these tests are shown in table 2, and one of the plants infected by graft is shown in figure 7, B. In eight of the nine tests, transmission was obtained. No infection was observed in any of the check plants. Although infection was relatively low in most of the tests, probably
owing to the death of the grafts before adequate union with healthy tissue occurred, the results demonstrate conclusively that the disease is graft-transmissible.

TABLE 2.—Transmission of yellow wilt of sugar beets by grafting diseased material to healthy plants

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Total grafted plants</th>
<th>Grafted plants infected</th>
<th>Total check plants</th>
<th>Check plants infected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>6</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1 All plants used in experiment 1, including check plants, were obtained from the field in Argentina and appeared healthy when selected.

JUICE INOCULATIONS

Attempts were made to transmit the virus of yellow wilt to several kinds of plants under greenhouse conditions. Juice was pressed from tops and from roots of badly diseased plants, and inoculations were made by rubbing the extracted juice over the surface of leaves of healthy plants, with and without an abrasive. In other tests, inoculations were made by introducing juice directly into the region of the growing points of plants by means of a fine needle. Inoculations were made to Turkish tobacco (*Nicotiana tabacum* L.), *N. glutinosa* L., petunia (*Petunia hybrida* Vilm.), the Scotia variety of bean (*Phaseolus vulgaris* L.), and cucumber (*Cucumis sativus* L.), as well as to sugar beet. No infection was obtained on any of these plants.

TRANSMISSION BY DODDER

Two species of dodder (*Cuscuta subinclusa* Dur. and Hilg. and *C. campestris* Yuncker) were used in tests of ability of dodder to transmit the virus of yellow wilt. Virus-free dodder was trained on diseased sugar-beet plants, and after it had become established stems were trained from diseased to healthy plants. After the dodder was well established on the healthy plants, dodder contact between diseased and healthy plants was broken.

From the results of these tests (table 3) it seems evident that the causal agent was transmitted from diseased to healthy plants in a small percentage of the cases by each species of dodder. The relatively low percentage of infection obtained may be due in part to poor contact by dodder on some of the inoculated plants; but it is probable that a low percentage of infection would be obtained, even under optimum conditions, from dodder contact, since the symptoms and other characteristics of yellow wilt indicate that the causal virus may be more closely associated with the phloem than with the parenchyma and since there is no evidence that either species of dodger is a host of the virus. No explanation is available for the one case of disease in the check plants inoculated by means of supposedly virus-free dodder.
Table 3.—Transmission of yellow wilt of sugar beets by means of dodder

<table>
<thead>
<tr>
<th>Species of dodder</th>
<th>Test No.</th>
<th>Results with dodder from infected beet plants</th>
<th>Results with dodder from healthy beet plants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plants inoculated</td>
<td>Plants infected</td>
</tr>
<tr>
<td>Cuscuta subinclusa</td>
<td></td>
<td>Number</td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Cuscuta campestris

TESTS WITH INSECTS

In 1939–40 preliminary tests were made in beet fields near Conesa, Argentina, to determine whether plants protected from insects by cages would remain free of disease and whether introduction of insects into the cages later in the season would result in infection.

For these tests 21 cages covered with close-woven muslin were divided into 3 groups of 7 cages each and placed over rows of sugar beets just after sowing. The cages of group 1 were used to test insects introduced later in the season from diseased plants. The cages of group 2 were raised about 10 cm. above the soil surface the middle of November in order to allow insects free access. The cages of group 3 were used as controls and remained closed during the entire season. Except for 1 cage of group 1 in which the seeds did not germinate, each cage contained from 5 to 7 plants.

By January 4, the beets in the cages had reached considerable size and were healthy although the disease had become general in the fields in which the cages were located. On that date, undetermined numbers of insects were captured on diseased beets in the surrounding fields and introduced into the cages of group 1. These collections consisted of all insects that were captured by sweeping with a net and included several species of leafhoppers.

The first symptoms of disease were noted on plants in the cages of group 1 on February 8, 35 days after the introduction of insects. These symptoms consisted of yellowing and drooping of leaves followed in most cases by necrosis and wilting of the entire plant. The incidence of disease increased, and by March 9 diseased plants were present in 5 of the 6 cages into which insects were introduced. Of the 31 plants in the 5 cages in which infection was obtained, 25 eventually became diseased.

Disease appeared in 4 of the 7 cages of group 2. The first symptoms were noted on December 18, about 30 days after the cages were raised. A total of 17 of the 44 plants in this group eventually became infected.

All the plants in the 7 cages of group 3 remained healthy.

Since these preliminary tests indicated clearly that insects are involved in the spread of the disease under field conditions, further tests were made in 1940–41 in an effort to determine the insect or insects responsible. As in the previous season, cages were placed over rows of beets just after planting. Beginning the early part of January, insects captured by sweeping badly diseased beets with
insect nets were segregated (except in one cage to which field sweepings were added) on the basis of species, and each species selected for test was placed in a separate cage containing healthy beets. The species of insects tested were Agalliana ensigera Oman, Xerophloea viridis (F.), Empoasca sp., Atanus exitiosus Beamer, Melanotrichus sp., and Myzus persicae (Sulz.).

Insects were added to the cages at different times during the next 3 weeks. Some were placed in the cages immediately after being captured, but others were allowed to feed 24 hours on diseased beets before being placed in the cages. In further tests, insects were taken from diseased beets and put into small leaf cages attached to leaves of small beets in pots under cloth cages.

Experiments were made also with diseased beets at the Arlington Experiment Farm by means of Piesma cinérea (Say), Myzus persicae, and Eutettix tenellus (Bak.).

A summary of the results obtained from these tests appears in table 4. Diseased plants were observed in all the large cages to which the leafhoppers later identified as Atanus exitiosus were added. No infection was obtained on any of the smaller beets to which small cages containing insects were attached.

<table>
<thead>
<tr>
<th>Table 4.—Transmission tests with yellow wilt of sugar beets by means of insects from field beets in the Rio Negro Valley and from diseased beets in the greenhouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Agalliana ensigera</td>
</tr>
<tr>
<td>Xerophloea viridis</td>
</tr>
<tr>
<td>Empoasca sp.</td>
</tr>
<tr>
<td>Atanus exitiosus</td>
</tr>
<tr>
<td>Myzus persicae</td>
</tr>
<tr>
<td>Melanotrichus sp.</td>
</tr>
<tr>
<td>Atanus exitiosus plus additional content of net from sweeping diseased beets</td>
</tr>
<tr>
<td>Piesma cinérea 1</td>
</tr>
<tr>
<td>Myzus persicae 1</td>
</tr>
<tr>
<td>Eutettix tenellus 1</td>
</tr>
</tbody>
</table>

Tests made in a quarantine greenhouse at the Arlington Experiment Farm, Arlington, Va., with insects that had fed on diseased beets.

Symptoms of disease were noted first on one of the plants in the cage in which insects swept from diseased beets were placed. The insects, known to include some individuals of Atanus exitiosus, were placed in this cage on January 20. On February 19 one of the plants

4 The authors are indebted to P. W. Oman, of the Bureau of Entomology and Plant Quarantine, Agricultural Research Administration, U. S. Department of Agriculture, for identification of the insects used in these experiments.

5 P. W. Oman, in viewing the specimens of this insect, reported that they represented a new species apparently closely resembling Atanus dentatus (Osb.) described in 1923 from Bolivia (6, p. 57) and noted also as occurring in northern Argentina (5). In the absence of Dr. Oman in military service, C. F. W. Muesebeck kindly arranged to have the collections studied by a specialist in this group, R. H. Beamer (1) has described the leafhopper as a new species, A. exitiosus.
was wilted and the lower leaves were dead. By March 18 this plant had produced new leaves which were yellow and necrotic and showed definite signs of the yellows phase of the disease. One plant (fig. 8) to which only _A. exitiosus_ was added was observed to have symptoms of disease on March 18. At this time the plant had wilted lower leaves, but the central leaves were erect, yellow, and necrotic.

The results obtained in the insect transmission tests, although somewhat limited in scope, are considered as reasonably strong evidence that the leafhopper identified as _Atanus exitiosus_ is the vector of the virus of yellow wilt.

FIGURE 8.—Sugar-beet plant, inoculated by means of the leafhopper _Atanus exitiosus_, showing yellow, necrotic leaves.

THE LEAFHOPPER SUSPECTED AS VECTOR

Atanus exitiosus, which probably is the vector of the virus of yellow wilt of sugar beets in Argentina, was found during January 1941 generally distributed in the valley of the Río Negro throughout the region where sugar beets were grown. In spite of this general distribution, however, it was not abundant in any of the sugar-beet fields.

In shape and size _Atanus exitiosus_ is similar to _Eutettix tenellus_, the vector of the virus of sugar-beet curly top. The dorsal side is light brown, and the ventral side has a distinctly yellowish cast. The males are somewhat smaller than the females. In field cages the leafhopper deposited eggs in beet leaves singly or in groups just beneath and parallel to the surface of the epidermis. Eggs were clearly visible under low magnification. They hatched into light-colored nymphs in about 12 days, and the nymphs appeared to thrive on sugar beet.

From the observations made in the field it seemed probable that sugar beet may be one of the more favorable host plants of _Atanus_
exitiosus, at least among the cultivated crop plants. In spite of the fact that the insect bred readily on sugar beets under cages, however, extensive search revealed no nymphs on beets outside the cages. This failure to find nymphs indicates clearly that the insect does not build up large populations on sugar beet, possibly owing partly to a late migration of leafhoppers into the fields and a low population of migrant adults.

Although Atanus exitiosus appeared to be more numerous on sugar beet than on any other plant, it was captured also on alfilaria (Erodium cicutarium (L.) L'Hérit.) and on Russian-thistle (Salsola kali L.). Two unidentified species of mustard (Brassica), an unidentified species of Chenopodium, and C. album were abundant in and adjacent to several of the beet plantings, but no leafhoppers were taken from any of these plants. Potato and tomato plantings seemed free of this leafhopper. Extensive sweepings of desert vegetation of various kinds and at different distances from the beet plantings were made, but no leafhoppers of this species were captured except in a few instances in the immediate vicinity of beet plantings. It seems certain that during January 1941 none of the native vegetation of the area where beet plantings were located was harboring more than a very small population of A. exitiosus.

THE CAUSAL AGENT

The evidence presented in this paper appears ample to justify the conclusion that the yellow wilt prevalent in beet plantings since 1929 in the lower Río Negro Valley is caused by a virus. On the basis of the probable insect vector and the symptoms produced on known susceptible hosts, the virus clearly belongs in the genus Chlorogenus established by Holmes (3). The name Chlorogenus patagoniensis is proposed for this virus, with the following description.

Chlorogenus patagoniensis n. sp.

Produces destructive disease on sugar beet (Beta vulgaris), characterized by sudden wilting and death of affected plants or by stunting, yellowing, and stimulation of axillary bud development. Vein yellowing sometimes present on affected plants. Transmissible by graft and by means of two species of dodder (Cuscuta subinclusa and C. campestris), but not by juice inoculation. Probable vector a leafhopper identified as Atanus exitiosus Beamer.

Descriptive habitat: Valley of the lower Río Negro in Argentina.

If the classification and nomenclature of Smith (7) are used, the virus should be designated Beta virus 6.

POSSIBLE METHODS OF CONTROL

It has been found that if sugar-beet plantings are made after the middle of December in the Río Negro Valley, they escape yellow wilt in large measure. This date of planting is later than that which gives maximum yields under disease-free conditions, but it is possible that sugar beets could be produced on a profitable commercial scale by taking advantage of the failure of the disease to develop extensively in late-planted beets.

It is not known whether the disease can be partly controlled by reducing the host plants on which the insect vector breeds. There are certain factors, however, that do not preclude the possibility of beneficial results from sprays that markedly reduce the vector popula-
tion. Each season, a certain percentage of the plant population has survived free of all symptoms of disease. It seems probable that these plants escaped infection because the vector was not sufficiently abundant to infect all the plants. If this is the correct explanation for the presence of healthy plants in affected fields, any reduction in the population of the insect vector before the insects have had an opportunity to transmit the virus would be expected to reduce correspondingly the amount of disease.

No evidence has been obtained that any variety of sugar beet has any appreciable resistance to yellow wilt. Kleinwanzleben brands have been used for most of the plantings in the Río Negro Valley. All importations of these brands of sugar beet have proved to be about equal in susceptibility. In 1938–39, 20 European varieties and 2 varieties from the United States (U. S. 12 and U. S. 33) were tested for relative susceptibility in variety test plots near Conesa. The disease was very severe, and large percentages of plants of all varieties were affected. There was no evidence, however, that any one of these varieties was superior to the others in resistance. The test was repeated in 1939–40 with 28 European varieties, U. S. 12, and U. S. 33; the results were similar to those obtained the previous season.

Efforts were made also, through selection and propagation of plants that remained healthy in severely diseased fields, to obtain a variety resistant to yellow wilt. In 1938–39 more than a thousand roots from apparently healthy plants were selected from plantings from seeds of Kleinwanzleben (German), Udycz (Polish), Cesena (Italian), Vilmorin (French), and varieties of Swedish and Danish origin, in fields near Conesa in which not more than 10 percent of the plants had survived. The selected roots were stored during the winter and planted out the following spring for seed production. Seeds from these selections were planted in variety test plots in 1940. The progenies showed no greater resistance, however, than that possessed by the varieties from which the selections were made.

The apparent lack of any appreciable variability in resistance among the many sorts of sugar beets tested and the fact that progeny from individual plants that survived in badly diseased fields showed no increase in resistance over the parent material is discouraging from the standpoint of selection and breeding for disease resistance. In every field in which this disease has occurred there have been in general two types of plants: (1) Those that showed no effects of the disease and (2) those that died of the disease or that were so severely injured that they would not produce seeds. These two types of plants either represent immunity and extreme susceptibility or else the apparently healthy plants merely escaped infection. The latter condition appears to be the more probable, and it is likely that selections as made did not deal with resistant plants but with those that had escaped infection. From information now available, susceptibility to yellow wilt in sugar beets seems to present a condition similar to that found with respect to susceptibility to curly top in tomato, in which effective factors for resistance have not been discovered. It seems probable from the evidence now available that it may be very difficult to develop varieties resistant to yellow wilt from commercial material.
DISCUSSION

The destructive attacks on sugar beets when they were introduced into the valleys of the Río Colorado and the Río Negro in Argentina are typical of what has occurred in a number of other instances in which an agricultural crop came in contact with a new pathogen under changed environmental conditions. It seems probable that there exists in the native vegetation of this part of Argentina a virus, transmitted by a local insect, which is capable of causing only mild symptoms or no symptoms on the native plants that harbor it but which has proved to be extremely severe on introduced sugar-beet plants.

The diversity of symptoms produced on sugar beet has led to speculation as to whether more than one causal agent is involved. Results of observations and experiments strongly support the concept that all the different types of symptoms observed are the result of the action of a single causal agent and that this agent is a virus. That all symptoms described result from attack by the same causal agent is indicated under field conditions by the presence of plants that first wilt and then recover to an appreciable degree and produce yellow leaves, sometimes with the stimulation of growth in axillary buds. The fact that yellowed and wilted plants selected in the field and transferred to the greenhouse all produced yellowed plants with an abundant development of axillary buds supports the field evidence. Furthermore, transmission by graft from plants of the two types gave only the typical yellowing and bunchy tops characteristic of the disease under greenhouse conditions.

The factors involved in the production of the widely dissimilar symptoms characteristic of the yellows and wilt phases of yellow wilt, respectively, are not known definitely, but certain observations that appear to have a bearing on the subject furnish a basis for speculation. It seems significant that only the yellows phase of the disease has been produced in the greenhouse and that in the field this phase has appeared early in the season, followed later by the wilt phase. These facts suggest that the type of symptoms produced is determined largely by environmental conditions to which the plants are subjected after infection.

It seems probable, as is known to be true for a number of other virus diseases, that one of the first effects of the disease is the production of a severe initial shock in the infected plant. This may involve sudden extensive injury to the rootlets, resulting in drastic reduction in the ability of the plant to take up water from the soil, or it may involve changes that result in the reduction of the ability of the plant to transport water. If the onset of the disease occurs in the greenhouse, where atmospheric humidity is high, or if it occurs early in the season in the field, when the days are cooler and transpiration rates are low, the plant may be able to survive the initial attack, partially recover, and establish a condition in which it is able to grow sufficiently to produce the yellows phase of the disease. However, in the field, if the attack comes later in the season, when the plants are larger and when transpiration rates are increased by high temperatures and strong winds such as are common in the Río Negro Valley, transpiration rates may be so high that the water content in much of the plant may drop below the critical wilting point during the period of initial shock,
and death of a part or all of the plant may result before the plant is able to make the adjustments necessary for partial recovery from early stages of attack.

Even though yellow wilt occurs in a part of the world where the beet-sugar industry is not yet of major importance, this disease has tremendous significance on account of its potentialities for destruction if introduced into other beet-sugar-producing areas of the world. The fact that the disease has, so far as known, not yet spread to the beet sections of Uruguay and to the more humid areas of Argentina may indicate that the vector is restricted to a relatively arid climate. The climatic conditions in the Río Negro Valley are very similar to those in large sections of the western part of the United States, where any insect vector able to thrive in the Río Negro Valley might also do well. Therefore, if both vector and virus were introduced into the West, there is reason to believe that the sugar-beet industry might face a major catastrophe. The threat is even more menacing because of the fact that it is reasonably certain that none of the more important varieties at present grown in the United States is resistant to the disease. There is evidence also that the sugar beet possesses almost no resistance to this disease. Development of varieties resistant to it would be very difficult, and success could be hoped for only after long and difficult work of selection and breeding. A somewhat parallel problem confronted the workers on the virus disease curly top in the Western States, but persistent tests over a period of years eventually yielded varieties with a very high degree of resistance to the disease. Whether this outstanding success from selection and breeding for curly top resistance could be repeated with yellow wilt probably depends on whether breeding material could be found that has a greater degree of resistance than has any of the varieties of sugar beets so far tested.

SUMMARY

A disease for which the name "yellow wilt" is suggested has caused severe damage to sugar beets in the valley of the Río Negro in Argentina, probably since the industry was first established in that region in 1929.

One phase of the disease is characterized by stunting, yellowing of foliage, slight stimulation of development of axillary buds, and leaf malformation; wilting and rapid killing of plants are characteristic of another phase. Plants are attacked usually after they attain considerable size.

Under greenhouse conditions, the disease was transmitted by grafting diseased to healthy tissue and by each of two species of dodder (Cuscuta subinclusa and C. campestris), but not by juice inoculation. Field observations indicate that a leafhopper (Atnanus exitiosus Beamer) is the vector of the causal agent.

The evidence indicates that yellow wilt is caused by a previously unknown virus. The designations Chlorogenus patagoniensis n. sp. and Beta virus 6 are proposed for the virus in accordance with the systems of classification and nomenclature of Holmes (5) and Smith (7), respectively.

In extensive tests in 2 seasons, involving 20 European varieties and 2 varieties from the United States the first season and 28 European
varieties and 2 varieties from the United States the second season, no evidence was obtained of an appreciable amount of resistance in any variety of sugar beet.

Satisfactory control measures for the disease have not been developed. Plantings made after the middle of December escape infection in the Río Negro Valley, but this date of planting is too late for maximum yields. Selection and propagation of healthy beets from badly infested fields have not resulted in increased resistance in the progeny. Other possible methods of control have not been tested.

LITERATURE CITED

(1) BEAMER, R. H.
1943. A NEW ATANUS FROM ARGENTINA, SOUTH AMERICA (HOMOPTERA-

(2) HENDERSON, C. F.
1928. EXPLORATION IN THE ARGENTINE REPUBLIC FOR PARASITES OF
THE BEET LEAFHOPPER, EUTETTIX TENELLUS (BAKER). Jour.

(3) HOLMES, F. O.
1939. HANDBOOK OF PHYTOPATHOGENIC VIRUSES. 221 pp. Minne-
apolis, Minn.

(4) HUYSKES, J. A.
1939. PHYSIOLOGISCHE ZIEKTENI VAN DE SUIKERBIET, VEROORZAAT
DOOR FOUTIEVE BEVLOEIING. Tijdschr. over Plantenziekten
45: 204–223, illus.

(5) OMAN, P. W.
1936. A GENERIC REVISION OF AMERICAN BYTHOSCOPINAE AND SOUTH

(6) OSBORN, H.
1923. NEOTROPICAL HOMOPTERA OF THE CARNEGIE MUSEUM. Pittsburg,

(7) SMITH, K. M.
1. The Journal accepts articles only from the United States Department of Agriculture and the State agricultural experiment stations.

2. Each article submitted must bear the formal approval of the chief of the department bureau or the director of the experiment station from which it emanates. The letter of transmittal must state that the manuscript has been read and approved by one or more persons (named) familiar with the subject, that the data as represented by the tables, graphs, summaries, and conclusions have been approved from the statistical viewpoint by someone (named) competent to judge, and that the computations have been verified.

3. Manuscripts originating at the State agricultural experiment stations should be forwarded to the chairman of the committee acting for the Association of Land-Grant Colleges and Universities, and those originating in the Department should be transmitted to the Division of Publications, which will forward them for approval to the committee, acting for the Department. Each manuscript is numbered and edited in the order received.

5. A recent copy of the Journal should be consulted and followed as to style.

6. Paper 8 x 10½ or 5½ x 11 inches, or good grade and medium weight, should be used.

7. All material except tables and quotations of more than three lines should be double-spaced. These may be single-spaced.

8. A table of contents properly indented to show the intended relationship between the different headings should accompany the manuscript.

9. Following the name of the author on the first page there should be given his official title and the name of the division, bureau, or station with which he is connected.

10. Each page of the manuscript should be numbered and should begin with a new paragraph; that is, no paragraph should carry over from one page to the next unless it is longer than one page.

11. Each footnote should be inserted in the text immediately after the line bearing the footnote reference.

12. Each table should be typed on a separate sheet, or on several if necessary. The page (or pages) carrying the table should immediately follow that containing the first reference to it. Each table should be referred to in the text and be numbered in the order of reference.

13. The Illustrations in the Journal are usually shown as text figures, but to bring out fine detail plates may be used. Text figures and plates are each numbered in the order of reference. Each text-figure legend should be inserted in the text underneath the line carrying the first reference to it. Legends for plates should accompany the manuscript but should not be inserted in the text. All legends should be double-spaced and furnished in duplicate.

14. The major parts or units of illustrations are designated by capital italic letters; the subparts or subunits by lower-case italic letters. No final lettering on illustrations should be attempted, particularly on photographs. All lettering and necessary drafting will be done in the Section of Illustrations of the Division of Publications. Required letterings or markings should be indicated in the margins or lightly in pencil on the illustrations.

15. Graphs should be sent in final form, if possible, except for the lettering. If prepared in tentative form the curves and bars should be carefully indicated so that they may be accurately redrawn.

16. The plate or figure number and the title of the accompanying manuscript should be lightly written (not typed) on the back of each illustration. All photographs should be submitted unmounted, enclosed in an envelope.

17. Only references cited in the text should be listed in the literature citations. If there are seven or more they should be given at the end of the paper under the heading “Literature Cited.” If fewer than seven they should be given as footnotes. All numbers referring to literature citations should be enclosed in parentheses in the text. The footnote reference to the first citation in the manuscript should be worded as follows: “Italic numbers in parentheses refer to Literature Cited, p. —.” Material under Literature Cited should be double-spaced.

18. For further information consult Miscellaneous Publication No. 3 issued by the Joint Committee on Policy and Manuscripts. It may be obtained from the Division of Publications, United States Department of Agriculture.