ACQUIRED IMMUNITY FROM CURLY TOP IN TOBACCO AND TOMATO

By JAMES M. WALLACE
Formerly associate pathologist, Division of Sugar Plant Investigations, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration, United States Department of Agriculture

INTRODUCTION

Since Wingard (24) reported that tobacco plants that had recovered from severe stages of the ring spot disease failed to show the usual disease symptoms when reinoculated with the ring spot virus, similar reactions have been observed in several other plant viruses, including curly top (4, 12, 21). Price (15) has presented an extensive and detailed review of this subject.

The term "recovery" is used in this paper to designate a permanent change in the plants from a severely diseased to a mildly diseased condition without total loss of the causative virus; and the recovery dealt with in these investigations is distinct from a simple masking of symptoms, which results from such factors as environment and natural resistance. With some viruses and under certain conditions, recovery is of such a high degree that it is difficult to distinguish between the recovered plants and the disease-free plants. In other instances the recovered plants continue to show mild symptoms but do not at any time revert permanently to a diseased condition as severe as that before recovery. In all instances where it has been demonstrated that such recovered plants and their vegetative progeny are resistant to injury from reinoculation with the virus of the disease from which they recovered, it also has been shown that the plants continually harbor virus. Although the concentration of virus in the recovered plants may be lower than that in nonrecovered plants, there is obviously some multiplication of virus since it is still present in vegetatively propagated plants many generations removed from the plant in which recovery originally occurred (13, 14, 21).

Investigations of recovery from curly top (21, 22, 23) have revealed some reactions not previously obtained in similar studies of recovery from other virus diseases of plants. First, it was demonstrated that the acquired immunity from curly top could be transferred from recovered to healthy tobacco (Nicotiana tabacum L.) plants by grafting. Later, it was shown that tomato (Lycopersicon esculentum Mill.) plants of varieties that commonly have no power of recovery could be "immunized" by grafting with recovered tobacco plants. Further study showed that in plants that had the power of recovery the process of "immunization" took place gradually but was usually completed before the plants showed signs of recovery. These reactions gave strong support to the belief that protective substances were

1 Received for publication April 26, 1943.
2 Italic numbers in parentheses refer to Literature Cited, p. 213.
involved in this phenomenon. For convenience, therefore, and because of some similarity to immunological reactions in animals, the terms employed in animal immunology are used in this paper. The term "acquired immunity," as used here, denotes an increase in resistance acquired as a result of some specific reaction between the plant and the virus. This acquired immunity consists of an acquired tolerance of the virus harbored by the plants after recovery and also a resistance to injury from reinoculation. The acquired immunity is referred to as "active" in plants that initiate the reaction leading to recovery and in plants propagated vegetatively from such plants. Plants that have acquired immunity by being grafted with recovered plants are designated as "passively immunized."

This paper reports further on the studies of recovery from curly top, especially that phase of the investigations dealing with the transfer of the acquired immunity from tobacco to tomato.

EXPERIMENTAL RESULTS

ACTIVELY ACQUIRED IMMUNITY IN TOMATO PLANTS

The writer has had few opportunities to look for recovery from curly top in commercial plantings of tomatoes in curly top areas, and only limited information has been obtained regarding the frequency of recovery in plants of tomato varieties under natural field conditions. Over a period of 3 years (1939, 1940, and 1941) about 800 curly top infected plants of commercial varieties were under observation in experimental plots, and only 1 plant recovered. In 1939, at Riverside, Calif., a plant of the Riverside variety recovered from a severe stage of disease by producing basal shoots that showed mild curly top symptoms. This plant had been inoculated earlier by means of leafhoppers (*Eutettix tenellus* (Bak.)) from a mixed colony; i.e., leafhoppers from each of several colonies carrying different virus strains had been grouped on a single large beet plant in order to build up a supply for field inoculations. For inoculation, 20 leafhoppers from this composite colony were confined for 7 days to a terminal portion of a branch of each tomato plant by means of a sleevelike celluloid cage. Cuttings were taken from the recovered Riverside plant and grown in the greenhouse for further study. For identification purposes, the vegetative progeny of this plant was designated Clone 2 and, since the original plant recovered and developed a condition of acquired immunity itself, plants of this clone are considered to have had an actively acquired immunity.

When grown in the greenhouse, cuttings of Clone 2 developed into vigorous plants on which it was sometimes impossible to detect curly top symptoms. Cuttings from Clone 2 were slower in forming roots than were healthy cuttings, and, in the early stages, both root and top growths were somewhat retarded. At later stages, growth of potted plants of Clone 2 very nearly equaled that of healthy plants. At times, slight curly top symptoms were discernible but they were never very conspicuous.

Transfers of virus from plants of Clone 2 to healthy plants by means of the leafhopper vector demonstrated that the plants harbored virus that was virulent on tomato. Figure 1 illustrates typical reactions of
plants used in such a test for virulence. Shown in this figure are (A) a vigorous, almost symptomless plant of the actively immunized clone; (B) a healthy plant of the same variety inoculated with virus directly from the immunized plant shown, the transfer being made by leafhoppers; and (C) a plant of this same variety after inoculation with a known virulent strain of curly top virus. Both inoculated plants eventually died from the effects of curly top; these reactions were proof that the virus in the immunized plant was as virulent on tomato as was the other known virus strain.

Clones 2, just described, which had spontaneously recovered from some unknown strain or strains of curly top virus, was tested at different times to two virus strains whose virulence on tomato had been shown. Typical results of such tests are shown in figure 2. Plants A and B are from immunized Clone 2, and plant C is a non-immunized control. Nonviruliferous leafhoppers were caged on plant A, whereas viruliferous leafhoppers carrying a virulent virus strain were caged on plants B and C. Plant A, as expected, was unaffected by exposure to nonviruliferous leafhoppers. A similar cutting from

Figure 1. Demonstration of high virulence of virus harbored by plants of actively immunized tomato, Clone 2: A, Plant of actively immunized Clone 2; B, nonimmunized plant inoculated, by means of beet leafhoppers, with virus from plant A; C, nonimmunized plant inoculated, by means of beet leafhoppers, with another virus strain known to be virulent on tomato. Both inoculated plants died; this result proved that the virus harbored by Clone 2 was as virulent on tomato as other known virulent strains of the curly top virus.
the immunized clone showed no reaction to inoculation by means of viruliferous leafhoppers, but the similarly inoculated nonimmunized control plant developed severe symptoms. Under the conditions of these tests, the plants of Clone 2 were highly resistant to or almost completely protected against further injury from at least two virulent strains of curly top virus.

These studies revealed that recovery, although not common, does sometimes occur in cultivated varieties of tomato and that the reac-

![Figure 2. Effects of reinoculating plants of actively immunized Clone 2 with another strain of curly top virus known to be virulent. A, Plant of immunized Clone 2 exposed to nonviruliferous beet leafhoppers. B, Plant of immunized Clone 2 exposed to beet leafhoppers carrying a known virulent strain of virus. C, Nonimmunized control plant after inoculation similar to that of plant B; plant C continued to decline and eventually died from the effects of curly top.](image)

tions involved are apparently identical with those previously observed in the studies of recovery of Turkish tobacco from curly top.

PASSIVE IMMUNIZATION OF TOMATO BY MEANS OF TOBACCO PLANTS

Methods

In the first tests made to determine whether the acquired immunity of tobacco could be transferred to tomato plants by grafting, healthy tomato scions were grafted laterally on recovered tobacco plants. Such tomato scions did not develop conspicuous curly top symptoms.
This may have been due in part to the fact that the tomato scions were not in a dominant growth position and thus developed too slowly for normal expression of symptoms. After from 4 to 6 weeks, cuttings were taken from the tomato scions and grown in the greenhouse for further study. Plants grown from such cuttings, or by successive propagations from them, developed almost normally, although they grew somewhat slower than healthy plants and usually showed mild curly top symptoms, indicating the transfer of both virus and protective substances from the tobacco plants to the tomato scions.

In later tests, scions from recovered tobacco plants carrying known individual virus strains were grafted to healthy tomato plants. When this method was followed, some of the tomato plants developed mild symptoms from the beginning, while others developed symptoms typical of the early stages of curly top, sometimes resulting in a severe necrosis on upper portions of the terminal shoot. If the growing point was not killed, new growth developing from the original terminal showed progressively less severe symptoms and, in either case, axillary shoots, sometimes almost free of symptoms, arose from below. On the other hand, tomato plants, infected either by direct leafhopper inoculation or by grafting with tomato plants that had been infected by leafhopper inoculation, developed severe curly top and made no recovery.
Figure 4.—Influence of protective substances on infection of tomato plants with curly top virus, strain 3: A, Plant infected by grafting with a tobacco plant that had recovered following inoculation with virus strain 3; B, plant infected with the same virus strain by means of beet leafhopper inoculation. Photographed after 64 days.
Figure 3 shows a tomato plant 67 days after it was grafted with a scion from a recovered Turkish tobacco plant carrying curly top virus, strain 8, known to be virulent to tomato. The scion was taken from the terminal of the recovered tobacco plant and was approximately 5 inches in length when the graft was made. The original terminal shoot of the tomato plant was killed, but axillary shoots that were normal in aspect developed from several points along the main stem. Plant A of figure 4 was grafted with a scion from a recovered tobacco plant carrying curly top virus, strain 3. Plants of this group did not develop severe symptoms of curly top. For some time the upper parts showed marked leaf rolling, slight yellowing, and some retardation of growth; but, as axillary shoots developed and growth of the original terminal proceeded, the symptoms became less conspicuous. Plant B of figure 4 shows the results of infection of a comparable nonimmunized plant with virus strain 3 when the inoculation was made by means of leafhoppers. This photograph was made on the sixty-fourth day after grafting and inoculation of the respective plants. At later stages, plant B was dead whereas plant A continued growth and was propagated for other tests.

BACK GRAFTS FROM PASSIVELY IMMUNIZED TOMATO TO HEALTHY TOBACCO PLANTS

The tomato plants that were infected by grafting with recovered tobacco could be propagated vegetatively, but cuttings taken from tomato plants infected by leafhopper inoculation always died. When scions from the passively immunized tomato plants were grafted back to healthy tobacco plants, the tobacco developed only mild symptoms, closely resembling those obtained when grafts were made directly from immunized tobacco to healthy tobacco. On the other hand, healthy tobacco plants grafted with scions from diseased, nonimmunized tomato plants developed severe curly top. Figure 5 shows the striking difference in the reactions of Turkish tobacco plants after grafting with scions from the two sources. The scion used on plant A came from a diseased, nonimmunized tomato plant. The scion used on plant B came from an immunized plant grown from a cutting from a tomato plant previously infected and immunized by grafting with a recovered tobacco plant. Both plants furnishing scions were in a field inoculation test and had received like inoculations. The reactions of the plants shown in figure 5 are representative of the two groups of plants described in table 1, in which the maximum degree of infection is indicated for each plant. These results, which are typical of those repeatedly obtained, show clearly that the tomato plants that had been infected by grafting with recovered tobacco plants could, in turn, confer protection on other healthy tobacco plants, a situation most simply explained by postulating transfer of a protective principle.

If these reactions are to be interpreted as a type of passive immunization, it must be demonstrated that, in these transfers of virus, the virus itself has not been changed in the direction of attenuation. In the course of these experiments, the virus from the immunized tomato plants was tested by using it to inoculate healthy tomato plants with the beet leafhopper as the vector. In all cases of positive
transfer of virus, the test plants developed severe curly top. Abun-
dant evidence was obtained by tests of this kind that the virus in the
mildly diseased, immunized plants produced severe curly top on
healthy plants. This evidence proves that recovery of plants and
transfer of acquired immunity by grafting cannot be attributed to
lessened virulence of the virus. Of course the hypothesis could be

advanced that the virus in the immunized plants exists in an attenu-
ated state but on passage through the leafhopper an increase in
virulence takes place. No parallel or analogous instance of such an
effect on the virus is known for curly top. The work of Giddings (6),
involving thousands of inoculations, has given no indication that
curly top strains of low virulence are changed in any way on passage
through the leafhopper.

Figure 5.—Effects of grafting Turkish tobacco plants with scions from non-
immunized and immunized tomato plants: A, Tomato scion from a non-
immunized, leafhopper-inoculated field-grown plant; B, tomato scion from a
passively immunized plant which had also received a controlled field inocula-
tion. Both field plants furnishing scions had become accidentally infected
with tobacco mosaic, but this was not a factor in the reaction of the plants
shown.
Acquired Immunity from Curly Top

TABLE 1

Reactions of healthy Turkish tobacco plants on which were grafted scions from immunized and nonimmunized tomato plants

<table>
<thead>
<tr>
<th>Source of scion</th>
<th>Reaction of tobacco stock plant—</th>
<th>Scions alive 40 days after grafts were made</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunized tomato</td>
<td>+ +</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Nonimmunized tomato</td>
<td>+ + + + + + + + + + + + + + + + + + + +</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Indicated as follows: 0 = no reaction; + = mild; + + = moderately severe; + + + = severe; + + + + = extremely severe.
2. Plant grown from cutting from tomato plant immunized by grafting with an immunized tobacco plant.
3. Scion lived but made no growth; stock plant not infected, indicating absence of vascular connection between scion and stock.
4. Tomato plant infected directly by leafhopper inoculation.
5. Scion died early; apparently no vascular connections formed.
6. Scion remained alive but made no growth; stock plant became diseased.

Greenhouse Reinoculation Tests on Passively Immunized Tomato Plants

Several different tomato clones that originated from tomato plants passively immunized by grafting with recovered tobacco plants were grown in the greenhouse and tested for resistance to reinfection. In the early tests, plants of these immunized tomato clones were reinoculated on several occasions with unknown mixtures of curly top virus.
strains. In other tests, two known strains were used individually for reinoculation. Although the virus strains used were virulent on tomato and produced severe symptoms on nonimmunized healthy control plants, the immunized plants showed no noticeable reactions to these reinoculations. The effects of inoculation upon a healthy control plant and three immunized plants, all grown as cuttings, are shown in figure 6. It can be seen that the healthy control was severely injured by the inoculation, but the immunized plants were unaffected. Similar reinoculation tests were made on a sufficient number of plants to justify the conclusion that the tomato plants, after being passively immunized from tobacco, were provided with a high degree of protection against two known strains and certain other unknown strains of curly top virus. Additional data concerning reinoculation of immunized tomato plants are presented later in this paper. In the experiments just described, records were incomplete in regard to the virus strains present in some of the immunized clones. These preliminary data have been presented, however, because they demonstrated passive immunization and because these clones were used in subsequent field tests.

FIELD TESTS OF IMMUNIZED TOMATO PLANTS

NATURAL EXPOSURE

In 1940 field plantings were made of some of the immunized tomato clones near Twin Falls, Idaho. Actively immunized Clone 2 and four clones of passively immunized tomatoes were included, as well as healthy, nonimmunized plants for controls. One of the passively immunized tomato clones was of the Stone variety and the others were of the Riverside variety. The cuttings were rooted at Riverside, Calif., and shipped to Twin Falls, where they were potted and grown in the greenhouse for about 3 weeks before being transplanted to the field. The controls consisted of cuttings from healthy, nonimmunized Riverside plants; as a further check on the degree of exposure to curly top, seedling plants of both the Riverside and the John Baer variety were included in the field planting.

The plants were set in the field on June 12 in a plot bordered on both sides by sugar-beet plantings. This Idaho district experienced an extremely heavy infestation of beet leafhoppers, and the incidence and severity of curly top in the nonimmunized tomato plants and in the susceptible sugar-beet varieties nearby gave proof that the tomato plants had had a severe curly top exposure. During the early part of the season, before curly top began to appear, the healthy control plants grew much more vigorously than the immunized plants. However, as the season advanced and the disease spread through the controls, the immunized plants continued to grow and increase in size, whereas by September 1 the control plants, numbering 224, were all severely diseased and a large percentage of them had died. Curly top was so severe and developed so rapidly that no edible fruits were produced on the controls. From September 1 until the plants were killed by frost, there was a sharp contrast in the appearance of the immunized lots and the nonimmunized controls. With the exception of the plants of one clone, a high percentage of the immunized plants were in good

3 The Idaho field plantings were supervised by Albert M. Murphy, assistant pathologist, Division of Sugar Plant Investigations.
View of a portion of experimental planting of immunized and nonimmunized tomato plants. Center foreground, left to right: Row 1, nonimmunized control grown from cuttings; row 2, plants of actively immunized Clone 2; row 3, plants of passively immunized Clone 3; row 4, plants of passively immunized Clone 4, some showing injury from reinfection with curly top virus. Photographed September 11, 1940, Twin Falls, Idaho.
condition, showing almost normal color, growing fairly vigorously, and producing a light to medium crop of fruit of good quality. Although some fruit ripened on the immunized plants on about the normal date, ripening in general was somewhat delayed and the plants had many green tomatoes when killed by frost. The fruits that matured on the immunized plants were graded as small to medium, and the yield, although good on some plants, was generally lower than would have been expected on plants not affected by curly top.

Plate 1 shows a part of the 1940 Idaho plot as it appeared on September 11. The rows of nonimmunized control plants, consisting of severely yellowed or dead plants, are easily located. In contrast, the immunized clones (replicated throughout the plot as single rows of 10 plants each) for the most part show no injury. In the foreground, as marked by the numbered stakes, are shown (1) dead or badly diseased plants grown from cuttings of nonimmunized healthy plants, (2) highly resistant plants of Clone 2 (actively immunized), and (3) highly resistant plants of Clone 3 (passively immunized). Adjacent to and on the right of Clone 3 can be seen a portion of a row of another passively immunized clone. The yellowed plants of this latter group show injury from reinoculation.

Table 2.—Reactions of immunized tomato clones and of healthy, nonimmunized controls to curly top exposure in field tests in Idaho

<table>
<thead>
<tr>
<th>Seedling lot or clone No.</th>
<th>Variety and immunization</th>
<th>Virus strains used in immunizing</th>
<th>Plants tested</th>
<th>Plants diseased</th>
<th>Plants showing indicated degree of infection</th>
<th>Plants surviving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cuttings, Riverside variety, nonimmunized controls.</td>
<td>None</td>
<td>76</td>
<td>0</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Cuttings, Riverside variety, actively immunized.</td>
<td>Mixture 2</td>
<td>57</td>
<td>3</td>
<td>57</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Cuttings, Stone variety, passively immunized.</td>
<td>do 4</td>
<td>39</td>
<td>3</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Cuttings, Riverside variety, passively immunized.</td>
<td>Strain 9 6</td>
<td>61</td>
<td>3</td>
<td>61</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Cuttings, Riverside variety, passively immunized.</td>
<td>Mixture 4</td>
<td>45</td>
<td>3</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Cuttings, Riverside variety, passively immunized.</td>
<td>Strain 9 6</td>
<td>28</td>
<td>3</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Seedlings, Riverside variety, nonimmunized controls.</td>
<td>None</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Seedlings, John Baer variety, nonimmunized controls.</td>
<td>do 74</td>
<td>74</td>
<td>74</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 All plants in immunized groups not showing symptoms were included as mildly diseased.
2 Original plant recovered after inoculation with mixture of strains.
3 All immunized plants carried virus and were therefore considered to be diseased regardless of symptom expression.
4 Immunization came from tobacco plant that had been inoculated by leafhoppers from stock colony presumably consisting of mixed strains.
5 3 plants died from ground squirrel injury; from standpoint of curly top, this group also had 100-percent survival.
6 Immunization came from tobacco plant that had been inoculated by leafhoppers carrying a single known strain (strain 9) of virus.
7 This number probably low; 8 dead plants were not included because of uncertainty of cause of death.

The different tomato groups used in this test are listed in table 2, with data on reaction to the curly top exposure and plant survival on October 2. Plants of immunized Clone 6 were known to be low in
vigor. Growth was poor, and the plants had shown marked curly top symptoms when grown in the greenhouse without further exposure to infection. Therefore, the poor performance of this clone, as shown in table 2, was very probably not due to reinfection, but rather to the fact that these plants had a lower degree of specific protection against the virus already in them. It is of interest, however, to note that 100 percent of the plants of this clone survived, even though more than three-fourths of them showed symptoms ranging from moderately severe to severe.

The data on survival of plants, as shown in table 2, contribute significant information. From the standpoint of mortality from curly top, 4 of the 5 immunized lots gave 100-percent survival. In Clone 3, shown as 92.3-percent survival, the loss of 3 plants from causes other than curly top was responsible for this group not being recorded as 100 percent. In Clone 4, a total of 8 plants died, but it was not possible to determine definitely whether all of these died from curly top. Even if all of the 8 plants died from curly top, this would make a total loss of only 8 out of 230 immunized plants in the test as a whole. On the other hand, in the controls all of the 148 healthy seedlings were dead on October 2, and only 20 out of a total of 76 plants grown from nonimmunized cuttings were surviving on that date. Of the 20 surviving plants in this latter group, all were severely diseased, and many were surviving only because of the fact that frequent rains and much cloudy, cool weather in September had enabled them to persist.

Some of the plants of the immunized groups, particularly in Clones 2, 3, and 4, developed curly top symptoms decidedly more severe than those shown by the majority of the plants in these groups. The most reasonable explanation of this seemed to be that for the most part the immunized plants were protected to a high degree against injury from the virus strains carried by most of the beet leafhoppers but that some of the vectors transmitted other strains against which the protection by immunizations was not equally effective. It was also evident that some of the immunized lines had a higher degree of protection than others. Other data, presented in a later section, support this explanation of the results obtained.

Controlled Inoculations

At Riverside, Calif., in 1940, field plantings were made of the immunized clones included in the Idaho tests, with the exception of Clone 6. The stock plants of this clone were of such a low degree of vigor that no plants of this line were available. Cuttings from healthy plants and healthy seedlings of the Riverside variety were included as controls. Since natural infestation in this area is usually very light, controlled inoculations can be made in the field, and the desired noninoculated plants, for the most part, remain free of infection throughout the season. These conditions permitted observations on both reinoculated and untreated plants of the immunized groups and on inoculated and noninoculated controls.

Well-established potted plants were transplanted to the field on May 29, and inoculations were made on July 5. Leafhoppers from each of several colonies, carrying different virus strains, were grouped, and 20 leafhoppers from the mixed colony were caged on each plant to be inoculated. All of the curly top strains used were known to be virulent on healthy tomatoes.
The inoculation tests at Riverside gave conclusive evidence that, under the conditions of this experiment, the immunized clones were injured by reinoculation when many virulent curly top virus strains were used. Certainly, one or more of the virus strains used for inoculation were capable of reinfecting the plants and producing severe injury. Another obvious fact was that some of the immunized clones responded differently to this reinoculation. This fact becomes evident upon examination of the data presented in table 3, prepared from records taken on September 16. The tests under natural exposure in Idaho also gave a suggestion of such differences and, of the three passively immunized clones tested in both localities, Clone 4 in both instances showed the most injury from reinfection. A possible explanation for a lower degree of protection in this clone is that the immunization in these plants originally came from a tobacco plant carrying a single strain of virus, whereas in Clones 3 and 5 the immunization came from tobacco plants originally inoculated with a mixture of strains, all of them different from that in Clone 4. As will be brought out later, the degree of protection may vary between immunized clones harboring different strains of the virus.

TABLE 3.—Reaction of immunized tomato clones and healthy nonimmunized controls to curly top in field inoculation tests at Riverside, Calif.

[Record made September 16, 1940]

<table>
<thead>
<tr>
<th>Seedling lot or clone No.</th>
<th>Variety and immunization</th>
<th>Virus strains used in immunizing</th>
<th>Field treatment</th>
<th>Plants tested</th>
<th>Plants showing indicated degree of infection</th>
<th>Plants surviving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Severe</td>
<td>Moderate-ly severe</td>
</tr>
<tr>
<td>1</td>
<td>Cuttings, Riverside variety, nonimmunized controls</td>
<td>None</td>
<td>/Inoculated</td>
<td>20</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Cuttings, Riverside variety, Clone 2, actively immunized</td>
<td>Mixture 1</td>
<td>/Inoculated</td>
<td>7</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Cuttings, Stone variety, passively immunized</td>
<td>do 1</td>
<td>/Inoculated</td>
<td>2</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Cuttings, Riverside variety, passively immunized</td>
<td>Single strain 2</td>
<td>/Inoculated</td>
<td>15</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Cuttings, Riverside variety, passively immunized</td>
<td>Mixture 1</td>
<td>/Inoculated</td>
<td>11</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Cuttings, Riverside variety, nonimmunized controls</td>
<td>None</td>
<td>/Inoculated</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Not inoculated)</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Undetermined mixed strains of virus, used in original inoculations of the tomato or tobacco plants in which the immunization was first initiated.
2 A single known strain (strain 9) of virus, used in inoculation of the tobacco plant in which the immunization originated prior to its passive transfer to tomato.

ROLE OF VIRUS STRAINS IN ACQUIRED IMMUNITY OF TOMATO CLONES

REACTION OF PLANTS OF ACTIVELY IMMUNIZED CLONE 2 TO DIFFERENT VIRUS STRAINS

Inoculation tests of immunized tomato plants under controlled conditions in the greenhouse had proved that the plants were highly resistant to injury from infection with at least two strains of curly top virus that were virulent on nonimmunized plants. The reaction of
some of the immunized plants under natural exposure in the field at Twin Falls was interpreted to mean that protection from one strain of the virus did not give protection against all strains. Artificial-inoculation tests of field-grown plants at Riverside gave conclusive proof that acquired immunity against one strain of the virus was not
effective against all strains, and this phenomenon presented a new phase of the problem for investigation. Although this part of the study is still incomplete, some of the results obtained are reported here.

The previous tests with Clone 2 had demonstrated that the acquired immunity in this clone was effective against two virus strains. This plant material was chosen for further tests against a number of virus strains. These tests demonstrated that virus strains play a significant role in acquired immunity from curly top in tomato. By making tests with a number of strains of curly top virus, it was shown that, depending upon the strain used, the protection existing in Clone 2 ranged from complete to slight. The plants shown in figure 7 are representative of three groups of Clone 2, 76 days after inoculation with three strains of virus respectively. Plant A, inoculated with strain 8, was unaffected; plant B, inoculated with strain 66, gave a mild reaction; and plant C, after reinfection with strain 58, developed severe symptoms.

The three virus strains used in this test are virulent on healthy tomato plants. In the test just described, healthy plants were inoculated in each case and all of them died from curly top before the plants in figure 7 were photographed. Although the plants of this immunized clone reacted quite severely to reinoculation with virus strain 58, the development of disease was much slower than in healthy plants infected with this strain, and usually the reinoculated immunized plants survived for long periods. In fact, some of them made a feeble recovery and could be continued by cuttings, but the plants propagated from them were of very low vigor. However, it was evident that the immunized plants were more resistant to virus strain 58 than the nonimmunized plants.

Table 4.—Reaction of plants of actively immunized Clone 2 and of healthy non-immunized control plants to inoculation with 9 different virus strains

(contains a table with data on reactions of different tomato clones to various virus strains)

The reaction of plants of actively immunized Clone 2 to reinoculation with nine different strains of curly top virus has been determined. Table 4 summarizes these data and shows, in comparison, the reaction of healthy nonimmunized tomato plants to the same nine strains. Four strains failed to produce any noticeable effect on Clone 2; the protection, under the conditions of these tests, was complete against those strains. However, the other five strains infected the immunized plants, and four of them caused marked injury. Although

4 Strain numbers above 10 are tentative numbers assigned by N. J. Giddings for identification purposes.
this clone was quite severely affected when reinoculated with certain virus strains, the plants were very slow in showing the effects of reinfection; and some of them survived and sometimes made a partial recovery. On the other hand, the healthy controls developed curly top rapidly and all of them died as a result of infection.

Increased manifestation of symptoms following reinoculation of immunized plants seems to be sufficient proof that the virus strain used for reinoculation became established in the plants. Nonviruliferous leafhoppers were fed on some of these plants to acquire virus and then were transferred to differential host plants whereby it could be determined if the second virus strain was present. In this manner, for example, it was shown that virus strain 58 was present in some of the Clone 2 plants that had been inoculated with this strain.

REACTION TO DIFFERENT VIRUS STRAINS OF CLONES PASSIVELY IMMUNIZED AGAINST SINGLE KNOWN VIRUS STRAINS

In order to make a further study of the relation of virus strains to acquired immunity from curly top, tomato plants were passively immunized against 12 individual strains of virus. To accomplish this immunization, Turkish tobacco plants were inoculated separately, by means of leafhoppers, with known curly top virus strains. Forty days after inoculation some of the tobacco plants had made a good recovery, others were in various stages of recovery, and some still showed no signs of recovery. At that time, healthy tobacco plants were grafted with scions from the inoculated tobacco plants, each carrying a different virus strain. The graft-infected plants developed mild symptoms in all instances, proving that the reactions leading to recovery had taken place in the leafhopper-inoculated plants even though some of them had not yet begun recovery. All of these plants produced new growth later, and there appeared to be no consistent differences in vigor and symptom expression between plants infected with different strains of the virus. A similar uniformity was displayed by the tobacco plants that were immunized by grafting with the leafhopper-inoculated plants.

After the acquired immunity against the individual strains of virus was established in the series of tobacco plants, scions from them were grafted to healthy Riverside tomato plants, to serve as the foundation plants from which to establish 12 tomato clones, each specifically immunized against, as well as carrying, a different virus strain. Later, similar graft transfers were made from immunized tobacco to plants of the tomato varieties John Baer, First Early, and Break o’ Day. In some of these experiments, comparable tomato plants were grafted separately with scions from an immunized tobacco plant and with scions from a tomato plant that had been immunized previously from this same tobacco plant. This was done to determine whether the degree of protection conferred on tomatoes was affected by the source of protective substances. From the data so far obtained, there was no good evidence that such was the case. For instance, with a given strain of virus, tomato plants usually reacted about the same when infected by grafting directly with an immunized tobacco plant as when the infection came from a tomato plant which had previously been passively immunized from that same tobacco plant. Some differences in reaction appeared but they were not consistent.
It has been mentioned already (p. 202) that Turkish tobacco plants immunized against the individual virus strains were quite uniform in appearance and vigor. Thus it appeared that tobacco plants recovered to approximately the same degree regardless of which strain of virus was involved. However, when tomato plants were passively immunized against different strains of curly top virus, the results indicated that the degree of immunization attained by the plants varied widely with different virus strains. This was shown by variations in both the initial reaction of the tomato plants after they were grafted with immunized tobacco scions and in the vigor of the clonal propagations from these tomato plants. Tomato plants grafted with
immunized tobacco scions carrying certain virus strains developed severe terminal symptoms and then produced mildly diseased axillary shoots (fig. 3). When certain other virus strains were used, the graft-infected tomato plants showed no severe initial shock such as that previously described (fig. 4). With still other virus strains, infection of tomato plants by graft transfer from immunized tobacco produced a severe reaction from which the tomato plants either failed to recover or made only a feeble recovery. Cuttings from the immunized tomato plants that were not severely affected after grafting with immunized tobacco, and cuttings from tomato plants that made a strong recovery after a severe initial reaction, grew vigorously and showed very mild curly top. Clones of the tomato plants that acquired a low degree of protection against some of the virus strains were low in vigor and showed marked injury from curly top.

Variations in vigor and symptom expression among the various immunized tomato clones, each carrying a different strain of the virus, show up strikingly prior to any reinoculation. Figure 8 shows plants of a healthy clone and of two clones immunized by different strains of curly top virus, grown in the field and not reinoculated. The plants immunized by strain 3 were of normal color and showed no curly top symptom except a slightly retarded growth. Plants of the clone immunized by strain 55 were slightly chlorotic and grew very slowly, but flowered and produced a few small fruits late in the season. On the basis of vigor and symptom expression, the 12 immunized clones used in these studies ranged from very sickly, slow-growing plants to plants that were normal except in rate of growth. In some instances plants of a particular clone, although small to medium, showed none of the usual curly top symptoms. Plants within a given clone were quite uniform in growth and general appearance.

Inasmuch as the tobacco plants in which the immunizing process was initiated and the tomato plants on which the protection was conferred were not all of single genotypes, some of the variability may have come from this source. However, because of the very uniform reaction in tobacco and general concordance among tests with various tomato stocks, effects of variability of the host plants are probably not the significant factor. From the evidence so far obtained, it seems that the immunization acquired by tomato is chiefly influenced by the virus strain itself and the reactions that it sets up.

Although field tests under natural exposure yield much worth-while information, controlled cross-inoculation tests are necessary to determine the relation of virus strains to acquired immunity from curly top in tomatoes. This represents a protracted study, which is still in progress; but some of the preliminary data can be presented.

Several tomato clones, each passively immunized by grafting with tobacco plants that had recovered after infection with single strains of the virus, were subjected to reinfection tests with various strains of the virus. The results of these tests, so far as they have gone, are summarized in table 5. In most instances, from 10 to 20 plants of each clone were inoculated with each virus strain used. The data show that, under the conditions of these tests, plants immunized by one strain may be protected against many strains but that the protection given by one strain of virus does not correspond with that given by some other strain. Of especial interest are the reactions of
the clones immunized by different virus strains to reinoculation with strains 9 and 75. The intensity of curly top reactions on some of the immunized clones in these tests might, at first glance, indicate a greater virulence in these two strains; nevertheless all the other virus strains likewise had a lethal effect on the controls. It is to be noted that the tomato plants immunized by strain 55 were completely protected against both 9 and 75, but that strains 5 and 6 both injured to some degree plants immunized by strain 55. In view of the fact that other data presented in this paper have established good evidence that protective substances are involved in recovery and acquired immunity from curly top, the strain specificity just described is interpreted as further evidence that the protective substances are of an immunologic nature. The failure of related virus strains to provide cross-immunity has been demonstrated on several occasions in the field of animal pathology (11, 16).

Table 5.—Reactions of immunized tomato clones carrying single virus strains to inoculation with various strains of curly top virus

<table>
<thead>
<tr>
<th>Plants immunized against virus strain No.</th>
<th>Reaction 1 when inoculated with strain—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Controls (nonimmunized)</td>
<td>+++</td>
</tr>
</tbody>
</table>

1 Indicated as follows: 0 = no reaction; + = mild; ++ = moderately severe; +++ = severe; ++++ = extremely severe, causing death of all plants.

DISCUSSION

In contrast to other virus diseases of plants that have been studied in relation to recovery and acquired immunity, curly top virus is restricted to the phloem and does not normally invade parenchyma tissues (2). Inoculation, except with the vector, gives a very low percentage of infection, apparently because the virus must be introduced directly into the phloem cells. Bennett (3) has shown that the virus may invade healthy mature leaves of sugar beet and multiply in them. There are, however, no primary localized symptoms at the site of inoculation such as commonly occur with the ring spot group of viruses. Instead, the symptoms of curly top appear after systemic invasion of tissues that have not passed a certain stage of maturity. Because the tissue relationship of curly top virus and the type of symptoms and manner in which they develop differ so distinctly from other viruses in which recovery has been studied, it was of particular interest to discover this recovery reaction in curly top affected plants.

Several workers have expressed the opinion that, in view of the lack of information on the nature of the reactions involved in recovery of plants from virus diseases and the accompanying protection, it is preferable to refer to this condition of the recovered plants as "acquired tolerance." Valleau (19, 20) has presented strong arguments...
against the use of the terms "recovery" and "acquired immunity" in connection with the reactions of tobacco plants affected with ring spot. Regarding the mechanism involved in these phenomena, Price (14) and Valleau (19) seemed to agree that patterned leaves are produced as long as the growing point has not been invaded and that, once the embryonic cells become invaded, patternless leaves are formed. Price (14) offered the hypothesis that ring spot virus reaches its maximum concentration in and exerts its maximum effect upon only those cells that are nearly mature at the time they are infected; and, further, invasion of embryonic cells is not accompanied by maximum increase in virus nor by severe injury to the cells. Thus embryonic cells, once invaded, become adapted to the presence of the virus and establish an equilibrium with it. Price recognized that, regardless of the correctness of this hypothesis, it still did not reveal the fundamental nature of the mechanism involved; he expressed the opinion that these reactions are sufficiently similar to many known immune reactions in the field of animal viruses to be accepted as examples of acquired immunity.

Valleau (19, 20) contended that, in the case of ring spot and certain similar viruses, the reactions involved in recovery are in no way immunological. He agreed with Price that the acquired tolerance is cellular, but suggested that embryonic cells become tolerant of the virus because of the presence of less virus-precursor materials or because of a less rapid change of such materials into virus. Other workers (1, 8, 10, 18) have suggested a somewhat similar explanation for instances of cross-protection, wherein a second virus fails to produce symptoms when inoculated into a plant previously invaded by a closely related virus. It seems logical to assume that certain cell constituents are essential for virus multiplication, and if such is the case the essential materials in a cell invaded by a given virus may become exhausted or at least be used as fast as they are synthesized. Under such conditions it would hardly be expected that a second virus, requiring the same materials as the virus already present, would become established in concentrations sufficient to produce its symptoms when inoculated into cells that are, as stated by Valleau (19), "already parasitized to their limit."

Price (13) grafted from ring spot recovered plants to healthy plants and found that typical symptoms of the severe stage always developed on the graft-infected plants, the reaction being identical with that on plants infected by the leaf-rubbing method. He stated that, if protective substances were present in the recovered plants, they were not detected.

In the case of curly top, the discovery that usually tobacco plants developed only mild disease symptoms after being grafted with recovered tobacco plants strongly indicated that protective substances were present in recovered plants (23). This conclusion was supported by the fact that the recovered plants contained virus that caused severe curly top when transferred by the leafhopper vector to healthy plants. When reinoculation tests had shown that recovered tobacco plants and their vegetative progeny were unaffected by reinoculation with curly top virus and, further, that tobacco plants that were infected by grafting with recovered plants were provided with a similar protection (23), it was concluded that in this instance the recovery
reactions were of an immunologic nature. Plants that recovered from a severe stage of curly top and were unaffected by reinoculation were described as having an actively acquired immunity. The failure of a healthy tobacco plant to develop severe curly top when grafted to an immunized plant was attributed to a type of passive immunization. Because the condition of immunity acquired by plants that recovered from curly top could be transferred through grafts to other plants, it has been possible to carry these investigations much further than in other instances of recovery of plants from viruses, such as tobacco ring spot, where recovered plants confer no protection on plants to which they are grafted.

Wallace (23) has shown that, under conditions about optimum for rapid curly top development, tobacco plants inoculated by means of leafhoppers required a period of about 20 days before they reached a condition that permitted them to confer maximum protection on healthy plants by passive transfer. On the other hand, if scions taken from leafhopper-inoculated plants on the fifth day following inoculation, prior to any showing of curly top symptoms, are grafted on healthy tobacco plants, severe symptoms are shown by the stock plants. It was therefore concluded that passive transfer of protection from plant to plant by grafting resulted from some reaction or change that occurs in leafhopper-inoculated tobacco plants sometime between the fifth and twentieth day after infection. Graft transfers at intermediate periods gave results that indicated that the reaction had begun within 10 days but was not completed on the fifteenth day after the plants were infected. Each of the time periods mentioned above actually may be longer by about 7 days, since in tobacco phloem connection between scion and stock usually requires 7 days or more. Thus, there is the period from time of grafting to time of phloem union, in which the reaction may continue in the scions before phloem materials can move into the stock plants. At the time the grafts were made, the 5-day infected plants showed no curly top symptoms, but the 20-day infected plants showed severe symptoms. On the basis of other tests with the curly top virus, it is believed that, if there is a difference in virus concentration between plants infected 5 days and plants infected 20 days, the scions from the 20-day infected plants contain the higher concentration. At any rate, the virus concentration in the respective scions is not believed to have been responsible for the results obtained in these tests. Plants infected by grafting, regardless of the source of scions, certainly must receive more virus than can be introduced by a small number of leafhoppers, yet infection from leafhopper inoculation usually causes severe symptoms. Leafhopper-inoculated tobacco plants and plants grafted with scions from short-time-inoculated plants sometimes develop only mild symptoms when the incubation period is long. In graft infections a delay of a few days after the graft union is formed before virus moves into the stock may permit the completion of the protective reaction before the terminal of the stock is invaded.

The evidence that tobacco plants develop some type of defense against the virus, enabling them to recover, became more striking when it was shown that, by grafting with immunized tobacco plants, it was possible to immunize tomato varieties that rarely recover and acquire immunity actively when inoculated by means of leafhoppers. The effectiveness of this method also demonstrated conclusively that,
whatever the defense mechanism is, it can be transferred through grafts to other plants and can function there in providing protection. After tomato plants have been passively immunized from tobacco plants, this condition can be passed on from these plants to other tomato plants by grafting. If, on the other hand, healthy tomato plants are grafted with diseased nonimmunized tomato plants they become severely affected with curly top and do not recover. Such results cannot be explained on the basis of invasion of embryonic tissues, since the opportunity for invasion of the graft-infected plants is the same in either case. The different response of tomato plants infected from immunized and from nonimmunized scions must, therefore, be caused by a difference in the scions themselves.

That invasion of immature tissues may play some role in acquired immunity from curly top is indicated by some of the results obtained in the studies with tobacco. Wallace (21) reported that, when tobacco plants were topped at the time they were grafted with an immunized scion, the symptoms that developed on the first axillary shoots were usually fairly severe for a time. However, such shoots recovered sooner than similar shoots on plants infected by leafhopper inoculation or by grafting with nonimmunized scions. Although this reaction might indicate some relation between stage of tissue differentiation and invasion by the curly top virus, such a relation would be the opposite of that existing in the case of invasion by the ring spot virus; invasion in the earlier stages by curly top causing a severe reaction, whereas a similar invasion by ring spot virus produces symptomless tissues.

Tobacco plants that are not topped after grafting with an immunized scion usually develop mild symptoms from the beginning. Occasionallv, however, an untopped plant may develop quite marked symptoms; this is particularly true if the graft-infected plant is closely approaching or has reached the flowering stage. Plants that have shown very mild symptoms for a long time sometimes develop conspicuous symptoms if the plants are topped so as to force new growth from axillary buds. These reactions, and also the increased symptoms or new growth of plants that are topped at the time they are grafted with an immunized scion, are believed to result from an increase in virus concentration through the movement of virus, and possibly of materials used in virus multiplication, into these areas from other parts of the plants. It is known that viruses move rapidly in the phloem toward regions of food utilization or storage. If this rapid movement results from mass flow of the liquid contents of the phloem, as has been suggested by Bennett (3), it would be expected that viruses would become highly concentrated in areas receiving large quantities of food materials from other parts of the plant. Bennett and Esau (4) found that the concentration of curly top virus increased rapidly in seeds of sugar beet as the seeds developed on curly top affected plants. In consideration of the above points, it would seem that in the plants immunized from curly top the mild symptoms and lessened injury are due to the fact that the virus concentration usually is held at a low level, i.e., at concentrations too low to produce normal injurious effects. The nature of the mechanism that causes this condition is not understood. The studies reported here indicate very strongly that plants recover and acquire this type
of protection from curly top as a result of some reaction between the virus and certain materials in the plants, resulting in the production of specific substances that either have an inhibiting effect on the virus directly or else bring about some change in the plants themselves, enabling them to tolerate the virus without becoming seriously injured.

The role of curly top virus strains in acquired immunity is particularly interesting. Turkish tobacco plants seem to recover to about the same degree regardless of the strain of virus in them. However, when graft transfers are made from tobacco to tomato plants, a high degree of protection is acquired by tomato against some of the virus strains and protection of lower degree is acquired against other strains. The conclusion that this difference exists is based on the observation that immunized tomato clones, carrying different strains of virus, vary widely in vigor and severity of symptoms. There has been some indication that individual plant variation has some influence on the degree of protection acquired by tomato. Slight genetic differences in the tobacco plants that develop active immunity or in the tomato plants that are passively immunized could be responsible for some of the variations in the degree of immunization acquired and maintained. Incomplete studies along this line indicate that if a sufficient number of seedling tomato plants are passively immunized against a virus strain that consistently provides a low degree of protection in tomato, an occasional tomato plant in the group may acquire protection of a much higher order, from which a vigorous clone can be established. However, the present belief is that the virus strain itself and the reactions it sets up in the plant account for most of the observed variation between tomato clones immunized by different strains of curly top virus.

Another interesting reaction is revealed by the discovery that immunized tomato plants carrying a certain virus strain or combinations of strains are unaffected by reinoculation with some strains and are injured quite severely by others. As in other phases of this study, the question arises as to whether these data provide any evidence concerning the nature of recovery and acquired immunity from curly top. In attempting to answer this question, a search for analogous reactions in the field of animal viruses has been made. According to Rivers (16, p. 215), there are three distinct types of the virus of foot-and-mouth disease, which, although they cannot be distinguished from one another clinically, do not produce cross-immunization. Rivers points out also that there are two types of the virus of vesicular stomatitis of horses, producing identical clinical pictures, but that animals recovered from one are not immune from the action of the other. Another example can be cited in the case of the influenza virus. There are different types of this virus and, further, there are different strains of a given type. Some of the strains of human influenza A virus have been shown to differ widely in antigenic make-up (71). This fact has been demonstrated both by reciprocal cross-neutralization tests and cross-immunity tests. Thus, it seems that a plurality of types exists in certain animal viruses whereby a particular virus may consist of two or more strains that differ in their immunologic reactions. In tomato plants, the failure of immunity acquired against one strain of the curly top virus to be effective against all strains of the
virus is similar in some respects to the animal virus reactions just described.

Putting aside connotations of terminology involved in the word "immune," the objections most commonly expressed to the findings that plants may acquire immunity against a virus disease are based on the fact that the plants do not completely recover from the disease symptoms and that the causative virus is at all times present in the plants. In other words, insistence is made that recovery or acquired immunity be limited to return to a virus-free condition. These objections are based in part on the assumption that in the field of animal immunology no analogous conditions exist and that animals that recover and acquire immunity from a virus make a complete recovery from disease symptoms and become free of the virus. Good evidence has already been obtained that immune animals do not always become virus-free, and some suggest that they may never reach this condition. Rivers (16, 17) cites instances where the viruses of certain diseases have been demonstrated to be present in recovered animals for quite a long period after the symptoms of the disease had disappeared. In fact, it has been suggested that the lasting immunity from many diseases of man and lower animals may actually be dependent upon the persistence of virus (16, 17, 25, 26).

There is such a wide difference between plant and animal organisms that it could hardly be expected that they would present identical pictures after acquiring immunity against infectious agents. Higher plants are in a continuous process of growth, particularly when kept in a vegetative state. New tissues are being formed at a rapid rate, perhaps much faster and more generally than in animals, and these tissues very probably produce a continuous supply of materials needed for virus multiplication. The formation of new tissues likewise furnishes susceptible tissues in need of protection. A small cutting from a plant that is immunized against a virus disease increases in size manyfold. Under such conditions, would it not be expected that plants would require a far higher degree of immunization if they are to be protected to the same extent as immunized animals?

The argument is frequently put forth that the wide difference between plant and animal circulatory systems makes it doubtful whether plants can develop a defensive mechanism similar to the antibody formation of animals. In the case of curly top, the virus is restricted to the phloem and thus exists in a uniform medium. If immune reactions occur in the plant virus field, it seems somewhat more probable that they would be found in phloem-restricted viruses. If protective substances are produced in the case of a phloem-restricted virus they would have to exist and operate only in one type of tissue in order to provide a defense against the virus. On the other hand, with viruses that are not restricted to the phloem, the defense mechanism would be required to operate in all of the different tissues invaded by the virus. Under such conditions, it would seem less likely that effective protection would be attained.

If plants that recover from curly top actually contain some type of protective materials, the failure of the leafhoppers to transmit them, assuming mere quantitative considerations are not involved, suggests that these materials are either inactivated in the leafhopper or that they are screened out in some manner so that they do not
reach the salivary glands of the insect. The leafhopper apparently separates the virus from the protective substances or else acquires and transmits only free virus, i.e., virus that has not been acted upon by protective substances.

Recovery and acquired immunity from curly top cannot be explained satisfactorily by curtailment or exhaustion of essential materials for virus reproduction or by invasion of embryonic cells. In the first place, in sugar beets, which do not recover and acquire immunity from curly top, ordinary cross-protection between virus strains does not occur. Carsner (5), in his early studies of curly top, showed that beets affected with a mild form of the disease were neither immune from nor more resistant to severe forms of the disease. Giddings (7) has recently shown that previous invasion of sugar-beet plants by less virulent strains of virus does not protect against other strains of high virulence superimposed upon the first and, further, that strains of high virulence do not prevent strains of low virulence from becoming established. It has not been possible to study the matter of simple strain protection in tomatoes, because all of the known strains of the curly top virus either fail to infect or else are extremely virulent on this host. Yet, after tomato plants become immunized, a certain degree of cross-protection between virus strains becomes effective. This type of cross-protection in immunized plants results from a specific reaction in the plant in which the immunity originates. If it were simply a mildly reacting strain of virus protecting against a related, more virulent strain, then the immunity against one strain of curly top virus would be expected to protect the plants against all others, because the strains of this virus are certainly very closely related. Furthermore, the mildly diseased condition of the immunized plants and their resistance to reinfection can hardly be explained on the basis of the presence of a mildly reacting strain of virus, since, in the experimental work here reported, the tomato plants were immunized against strains of high virulence that persisted in the plants without change.

The demonstration that a period of time is required for tobacco plants inoculated by means of leafhoppers to reach a condition in which they can confer passive protection on other plants is evidence that the condition of acquired immunity involves the production of protective substances within the plant as a result of its being infected with the virus.

The fact that tomato plants of cultivated varieties, which rarely initiate the reaction leading to recovery and acquired immunity, can be provided with this condition when they are grafted with immunized tobacco plants is difficult to explain other than on an immunologic basis. The condition eventually reached in such plants suggests a type of passive immunization which partly protects the plants during the early stages of disease and thereafter incites an active production of protective substances by the recipient plant. Such a reaction differs from the usual conception of passive immunization in the field of animal pathology, but Kolmer and Tuft (9, p. 34) suggest a similar phenomenon in the following statement: "Acquired immunity occurs in two distinct forms: (1) active and (2) passive. A mixed form may exist, brought about by a combination of factors necessary for the development of the other two."
SUMMARY AND CONCLUSIONS

Tomato plants of cultivated varieties become severely diseased when infected with the curly top virus either by leafhopper inoculation or by grafting with other tomato plants that have been infected by means of leafhopper inoculation. If, on the other hand, they are grafted with Turkish tobacco plants in which recovery, or the reaction leading to recovery, has occurred, the tomato plants acquire an immunity similar to that observed in recovered tobacco plants. Since the tomato plants rarely show any tendency to initiate the recovery reaction, this transfer of immunity may be considered a type of passive immunization in plants, although it differs from ordinary passive immunization in animals. Actually, this immunization may be passive only in the sense that certain substances are transferred from the immunized tobacco plants that protect the tomato plants to some extent during the early stages of disease and incite the production of like protective substances in the recipient plants. The retention of the acquired immunity in the tomato plants through many successive propagations, after it once becomes established, suggests that an active process is in operation.

By the use of Turkish tobacco, which always recovers from curly top, it was possible by graft transfer to immunize tomato plants against individual strains of the curly top virus. Immunized tomato plants varied widely in vigor and symptom manifestation according to the virus strain used. Clonal plants propagated from the immunized plants also showed the same wide variation of response, ranging from vigorous, at times symptomless, plants to those of low vigor with conspicuous curly top symptoms. These variations among tomato clones immunized against different virus strains were fairly consistent, and for the most part seemed attributable to the virus strains rather than to individual plant variation.

Tomato clones immunized by single virus strains, when tested by reinoculations which superimposed different virus strains, showed high protection against some strains and less against others. These reactions indicated a definite specificity of immunization. The protection given by one virus strain might be equally effective against many strains, but occasionally the protection was found to be relatively low both from the standpoint of numbers of strains and degree of injury caused by individual strains. These results were confirmed by performance of clones of immunized tomato plants grown in the field under heavy natural exposure to curly top.

Since there are no known strains of curly top virus that react mildly on tomato, it has not been possible to determine whether a mildly reacting strain in a nonimmunized tomato plant would protect against the more virulent strains. However, in tomato plants immunized against and carrying virulent strains of the virus, cross-protection of a kind has been demonstrated. This differs from ordinary cross-protection in that (1) the mild symptoms of the immunized plants are not due to the presence of a virus strain of low virulence and (2) the degree of protection varies from complete to slight, depending on which strain of virus is carried by the immunized plants or which strain is used for reinoculation of the immunized plants. Since all of the virus strains used in these studies are virulent on tomato and since the virus strains have remained stable over a long period of testing on
numerous differential plant hosts, it seems most certain that the recovery and acquired immunity from curly top cannot be explained by strain antagonism.

Experiments dealing with graft transfer from immunized plants to healthy plants, in comparison with similar transfer from nonimmunized to healthy plants, led to the conclusion that recovery and acquired immunity from curly top are not correlated with virus invasion of immature tissues.

Recovery and acquired immunity from curly top in tobacco and tomato seem to differ fundamentally from similar phenomena described for other plant viruses and seem closely comparable to reactions known for animal viruses. The experiments that deal with passive transfer of protective substances and the time element involved in the recovery process, during which the protective substances are generated, support this position. Furthermore, the specificity among virus strains, with respect to their immunizing potentialities and the degree of protection conferred either actively or passively, corresponds with results reported for animal virus strains. The persistence of virus in the recovered plants no longer excludes these plant reactions from the field of immunology, as more evidence is obtained that immunity from certain animal viruses may actually depend on the continued presence of the causative virus.

This study on plant reactions to curly top virus has given the following findings: Regularly occurring recovery in tobacco; acquired resistance of recovered plants to injury from reinoculation; persistence in recovered plants of curly top virus not lessened in virulence; evidence of a time factor involved in the reactions leading to recovery; evidence that this recovery and acquired resistance does not result from invasion of embryonic tissues; proof of transfer by grafting of the acquired condition of tolerance and resistance from a recovered plant, not only as an intraspecific transfer (tobacco to tobacco) but as an interspecific passage (tobacco to varieties of tomato that very rarely initiate the recovery reaction); and, finally, evidence of the striking specificity exhibited by different strains of the virus. This whole range of experimental evidence clearly indicates that the phenomena are immunologic in nature.

LITERATURE CITED

(1) Bawden, F. C.
1934. STUDIES ON A VIRUS CAUSING FOLIAR NECROSIS OF THE POTATO.

(2) Bennett, C. W.
1934. PLANT-TISSUE RELATIONS OF THE SUGAR-BEET CURLY-TOP VIRUS.

(3) ———
1937. CORRELATION BETWEEN MOVEMENT OF THE CURLY TOP VIRUS AND
TRANSLLOCATION OF FOOD IN TOBACCO AND SUGAR BEET.

(4) ——— and Esau, K.
1936. FURTHER STUDIES ON THE RELATION OF THE CURLY TOP VIRUS TO
PLANT TISSUES.

(5) Carsner, E.
1925. ATTENUATION OF THE VIRUS OF SUGAR BEET CURLY-TOP.
Phytopathology 15: [745]–[757], illus.

(6) Giddings, N. J.
1938. STUDIES OF SELECTED STRAINS OF CURLY TOP VIRUS.
(7) Giddings, N. J.
1940. CURLY-TOP VIRUS STRAINS. (Abstract) Phytopathology 30: 786.

(8) Köhler, E.
1934. UNTERSUCHUNGEN ÜBER DIE VIRUSKRANKHEITEN DER KARTOFFEL.

(9) Kolmer, J. A., and Tuft, L.
1942. CLINICAL IMMUNOLOGY BIOThERAPY AND CHEMOTHERAPY IN THE
DIAGNOSIS, PREVENTION AND TREATMENT OF DISEASE. 941 pp., illus. Philadelphia and London.

(10) Kunkel, L. O.
1934. STUDIES ON ACQUIRED IMMUNITY WITH TOBACCO AND AUCUBA

1941. STUDIES ON INFLUENZA VIRUS. THE COMPLEMENT-FIXING ANTIGEN

(12) Lesley, J. W., and Wallace, J. M.
1938. ACQUIRED TOLERANCE TO CURLY TOP IN THE TOMATO.
Phytopathology 28: 548–553, illus.

(13) Price, W. C.
1932. ACQUIRED IMMUNITY TO RING-SPOT IN NICOTIANA. Boyce Thompson

(14) ———
1936. VIRUS CONCENTRATION IN RELATION TO ACQUIRED IMMUNITY FROM
TOBACCO RING SPOT. Phytopathology 26: 503–529, illus.

(15) ———
1940. ACQUIRED IMMUNITY FROM PLANT VIRUS DISEASES. Quart. Rev.
Biol. 15: 338–361, illus.

(16) Rivers, T. M.
1928. SOME GENERAL ASPECTS OF FILTERABLE VIRUSES. In Rivers:
T. M. Filterable Viruses. 428 pp., illus. Baltimore.

(17) ———
1942. IMMUNITY IN VIRUS INFECTIONS. Science (n. s.) 95: [107]–112.

(18) Salaman, R. N.
1936. IMMUNITY TO VIRUS DISEASES IN PLANTS. Third Internatl. Cong.

(19) Valleau, W. D.
1933. DO TOBACCO PLANTS RECOVER FROM AND DEVELOP IMMUNITY TO

(20) ———
1941. EXPERIMENTAL PRODUCTION OF SYMPTOMS IN SO-CALLED RECOVERED
RING-SPOT TOBACCO PLANTS AND ITS BEARING ON ACQUIRED
IMMUNITY. Phytopathology 31: 522–533, illus.

(21) Wallace, J. M.
1939. RECOVERY FROM AND ACQUIRED TOLERANCE OF CURLY TOP IN
NICOTIANA TABACUM. Phytopathology 29: 743–749, illus.

(22) ———
1940. EVIDENCE OF PASSIVE IMMUNIZATION OF PLANTS FROM CURLY TOP

(23) ———
1940. EVIDENCE OF PASSIVE IMMUNIZATION OF TOBACCO, NICOTIANA
TABACUM, FROM THE VIRUS OF CURLY TOP. Phytopathology 30:
673–679, illus.

(24) Wingard, S. A.
1928. HOSTS AND SYMPTOMS OF RING SPOT, A VIRUS DISEASE OF PLANTS.

(25) Zinsser, H.
1932. ON POSTULATES OF PROOF IN PROBLEMS OF THE BACTERIAL LIFE
CYCLE. Science (n. s.) 75: 256–258.

(26) ———
1939. IMMUNITY PRINCIPLES AND APPLICATION IN MEDICINE AND PUBLIC
HEALTH. (Ed. 5, Resistance to Infectious Diseases.) 801 pp., illus. New York.
INFORMATION IN REGARD TO THE POLICY OF THE JOURNAL
OF AGRICULTURAL RESEARCH AND SUGGESTIONS TO AUTHORS

1. The Journal accepts articles only from the United States Department of Agriculture and the State agricultural experiment stations.

2. Each article submitted must bear the formal approval of the chief of the department bureau or the director of the experiment station from which it emanates. The letter of transmittal must state that the manuscript has been read and approved by one or more persons (named) familiar with the subject, that the data as represented by the tables, graphs, summaries, and conclusions have been approved from the statistical viewpoint by someone (named) competent to judge, and that the computations have been verified.

3. Manuscripts originating at the State agricultural experiment stations should be forwarded to the chairman of the committee acting for the Association of Land-Grant Colleges and Universities, and those originating in the Department should be transmitted to the Division of Publications, which will forward them for approval to the committee, acting for the Department. Each manuscript is numbered and edited in the order received.

5. A recent copy of the Journal should be consulted and followed as to style, especially in regard to tables, illustrations, and literature citations.

6. Paper 8 x 10½ or 8½ x 11 inches, of good grade and medium weight, should be used.

7. All material except tables and quotations of more than three lines should be double-spaced. These may be single-spaced.

8. A table of contents properly indented to show the intended relationship between the different headings should accompany the manuscript.

9. Following the name of the author on the first page there should be given his official title and the name of the division, bureau, or station with which he is connected.

10. Each page of the manuscript should be numbered and should begin with a new paragraph; that is, no paragraph should carry over from one page to the next unless it is longer than one page.

11. Each footnote should be inserted in the text immediately after the line bearing the footnote reference.

12. Each table should be typed on a separate sheet, or on several if necessary. The page (or pages) carrying the table should immediately follow that containing the first reference to it. Each table should be referred to in the text and be numbered in the order of reference.

13. The illustrations in the Journal are usually shown as text figures, but to bring out fine detail plates may be used. Text figures and plates are each numbered in the order of reference. Each text-figure legend should be inserted in the text underneath the line carrying the first reference to it. Legends for plates should accompany the manuscript but should not be inserted in the text. All legends should be double-spaced and furnished in duplicate.

14. The major parts or units of illustrations are designated by capital italic letters; the subparts or subunits by lower-case italic letters. No final lettering on illustrations should be attempted, particularly on photographs. All lettering and necessary drafting will be done in the Section of Illustrations of the Division of Publications. Required letterings or markings should be indicated in the margins or lightly in pencil on the illustrations.

15. Graphs should be sent in final form, if possible, except for the lettering. If prepared in tentative form the curves and bars should be carefully indicated so that they may be accurately redrawn.

16. The place or figure number and the title of the accompanying manuscript should be lightly written (not typed) on the back of each illustration. All photographs should be unmounted, enclosed in an envelope.

17. Only references cited in the text should be listed in the literature citations. If there are seven or more that should be given at the end of the paper under the heading "Literature Cited." If fewer than seven they should be given as footnotes. All numbers referring to literature citations should be enclosed in parentheses in the text. The footnote reference to the first citation in the manuscript should be worded as follows: "Italic numbers in parentheses refer to Literature Cited, p. —." Material under Literature Cited should be double-spaced.

18. For further information consult Miscellaneous Publication No. 3 issued by the Joint Committee on Policy and Manuscripts. It may be obtained from the Division of Publications, United States Department of Agriculture.
CONSERVATION OF SCHOLARLY JOURNALS

One of the most difficult tasks in library reconstruction after the first World War was that of completing foreign institutional sets of American scholarly, scientific, and technical periodicals. The attempt to avoid a duplication of that situation is now the concern of a special committee of the American Library Association, headed by John R. Russell, the Librarian of the University of Rochester.

Because of the imminent paper shortage, attempts are being made to collect old periodicals for pulp. The Committee hopes to enlist the cooperation of subscribers to this Journal in preventing the sacrifice of this type of material to the pulp demand.

Questions concerning the project or concerning the value of particular periodicals should be directed to Wayne M. Hartwell, Executive Assistant to the Committee on Aid to Libraries in War Areas, Rush Rhees Library, University of Rochester, Rochester, New York.