p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours

Annie Yang*, Nancy Walker†, Roderick Bronson‡, Mourad Kaghad‡, Mariette Oosterwegel§, Jacques Bonnin†, Christine Vagné†, Helene Bonnet†, Pieter Dikkes‡, Arlene Sharpe§, Frank McKeon* & Daniel Caput†

*Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
†Sanofi Recherche, Innopole B.P. 137, 31676 Lebègue Cedex, France
‡U.S. Department of Agriculture, Human Nutrition Research Center on Aging, and Department of Pathology, Tufts University of School of Veterinary Medicine, Boston, Massachusetts 02111, USA
§Immunology Research Division, Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
††Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, USA

p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2–4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells5–7. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers1, and the ability of p73 to transactivate p53 target genes6, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.

Our analysis of murine p73 complementary DNAs revealed transcripts encoding p73 proteins that lack an amino-terminal transactivation domain (ΔN-p73), in addition to those that show the carboxy-terminal diversity reported for human p73 (Fig. 1a)1,8. Like the transcripts encoding ΔN-p63 (ref. 5), the ΔN-p73 messages are derived from an alternative promoter located in intron 3. ΔN-p73 failed to activate transcription from a p53-reporter gene (data not shown) but suppressed the transactivation activity of p73α by hetero-oligomerization and competition for DNA binding (Fig. 1b, c). In situ hybridization experiments on mouse embryos failed to detect p73β, γ or δ transcripts, whereas p73α messenger RNA was highly expressed in a number of epithelial and neural structures, including nasal epithelium, the vomeronasal organ, the hippocampus and the hypothalamus (Fig. 1d; and data not shown). Additional probes revealed that ΔN-p73 transcripts appeared to be the predominant p73 gene product in adults (data not shown) and during embryogenesis (Fig. 1e).

Mice with disrupted p73 alleles were produced using homologous recombination in embryonic stem (ES) cells to replace exons 5 and 6, which encode the DNA-binding domain, with the neomycin-resistance (NEO8) gene10 (Fig. 1f). The offspring of p73 heterozygous mice showed a mendelian distribution of genotypes indicating that p73, like p53, is not required for embryogenesis12 (Fig. 1g). Polymerase chain reaction with reverse transcriptase (RT-PCR) and sequence analysis of RNA from murine embryonic fibroblasts (MEFs) of known p73 genotypes confirmed the disruption of the p73 gene (Fig. 1h).

p73α−/− pups showed a runting phenotype and high rates of mortality (Fig. 2a, b). Most commonly, death followed massive gastrointestinal haemorrhages, although intracranial bleeding was apparent in ~15% of the mortalities. Histological examinations of the gastrointestinal tract of the p73α−/− postnatal day 7 (P7) mice revealed numerous abnormalities including erosion marked by a loss of enterocytes and excessive mucouscretions in the duodenum, ileum and cecum (Fig. 2c; and data not shown), which may underlie the wasting syndrome and the intestinal haemorrhaging in these mice.

A striking feature of the p73α−/− mice was severe rhinitis and purulent otitis media (Fig. 2d; and data not shown). Massive neutrophil infiltrates of these sites were observed at the earliest ages examined (P2 pups) and persisted through adulthood, when greater than 80% of p73α−/− mice exhibited chronic, bilateral rhinitis, otitis, periportal oedema and conjunctivitis. Microbiological analysis of affected sites from p73α−/− weanlings (P21) revealed the presence of Escherichia coli, Pasteurella aerogenes and micrococcal species. Despite these indications of inflammation and infection, no obvious deficiencies in lymphoid or granulocyte populations were detected in the p73α−/− mice, indicating that there might be defects in other components of the natural immune system. In support of this notion, p73 was highly expressed in the epithelia bordering the sites of infections in P21 mice (Fig. 2e). These epithelia function, in part, as barriers to external pathogens through secretion of mucus, cytokines and antimicrobial factors13. Despite the massive sinus inflammation marked by mucouscretions, neutrophil infiltration and goblet cell hyperplasia of the surrounding epithelia in the P2 pups (data not shown), these pups also lacked obvious Gram-staining pathogens. Together, these data indicate that the infections seen in the older pups may be, as with cystic fibrosis14,15, the result of inappropriate or hyperactive epithelial responses, which in turn renders these sinuses habitable by microorganisms. These observations raise the possibilities that the infections in the p73α−/− mice are secondary to constitutive inflammatory signals promoted by the loss of p73, and may be linked to the gastrointestinal phenotype as a generalized pan-mucositis.
The p73^{−/−} mice also show a mild, congenital hydrocephalus that progresses in some animals to a highly morbid condition marked by massive expansion of the lateral ventricles, compression of the cortex and intraventricular bleeding (Fig. 2f). Our analysis revealed a communicating form of hydrocephalus in these mice, indicating that there might be defects in production or reabsorption of cerebral spinal fluid (CSF)¹⁸. Precedence for the overproduction of CSF leading to hydrocephalus is found in mice lacking the transcription factor, E2F-5; these mice also develop a nonobstructive hydrocephalus¹⁷. Moreover, just as E2F-5 is abundant in the choroid plexus, p73 is highly expressed in the epithelial cells of the choroid plexus and in the ependymal cells lining the ventricles (not shown), both of which regulate CSF secretion and reabsorption. These data show that p73 is critical in regulating the homeostasis of CSF dynamics and raise the possibility of p73 interactions with E2F-5 in these processes.

Examination of the brains of the p73^{−/−} mice revealed hippocampal dysgenesis, which is characterized by unusual arrangements of the CA1–CA3 pyramidal cell layer and the dentate gyrus (Fig. 3a, b). The dentate gyrus lacked an infrapyramidal blade and the suprapyramidal blade appeared hypertrophied and extended (Fig. 3a, b), which overall suggest an organization defect rather than a deficit of granular neurons. No major structural abnormalities were observed in other areas of the p73^{−/−} brain, including the neocortex and cerebellum. Although defects in neurogenesis have been described

![Figure 1](https://example.com/figure1.png)

Figure 1 Targeted disruption of the murine p73 gene. **a.** Murine p73 structure depicting the transcriptional start positions of the two major promoters and the alternative splicing events that, together, give rise to the p73α, p73β, ΔNp73α and ΔNp73β transcripts. **b.** Transactivation and suppression analysis of p73 isotypes expressed in mammalian cells. Upper panel, luciferase activity after co-transfection of a luciferase p53-reporter construct and p73α with increasing ratio of ΔNp73α expression vector. Lower panel, anti-p73 western blot of cellular extracts analysed in the transcription assays. **c.** Gel-shift analysis of radiolabelled oligonucleotide containing p53 sites following incubation with in vitro translated p73α, ΔNp73α or mutant (H292R) p73α. Super-shifting (lane 1) was done with anti-p73 antibodies. **d.** In situ hybridization of sagittal sections of E18 mouse embryo with antisense probes corresponding to the p73α C terminus (left panel), and the p73β C terminus (right). VNO, vomeronasal organ. **e.** In situ hybridization analysis of sagittal sections through the telencephalon of an E12.5 embryo using p73 DNA binding (left), transactivation (middle) and ΔN (right) probes. **f.** Targeting strategy for disruption of murine p73 gene. Approximate sizes of hybridizing fragments are indicated. H, HindIII; N, NheI; S, SpeI, kb, kilobases. **g.** Top, Southern blot analysis of tail DNA from offspring of matings between p73^{−/−} mice. Wildtype (wt) and mutant (mut) alleles are indicated. Bottom, RT-PCR analysis of RNA from fibroblasts of embryos with indicated p73 genotypes.

![Figure 2](https://example.com/figure2.png)

Figure 2 Somatic growth defects and mortality in p73^{−/−} pups. **a.** Size comparison of 10-day-old pups with indicated p73 genotypes. **b.** Mortality curves of p73^{−/−}, p73^{+/−} and p73^{−/−} mice of SJ129 or mixed backgrounds. **c.** Comparison of gastrointestinal tract of wild-type and p73^{−/−} P7 mice. Histological sections of wild-type (left panel) and mutant ileum (right panel) revealing distended and eroded appearance of the mutant ileum. **d.** Left, transverse section at level of nasal passages of pre-weaning p73^{−/−} mouse revealing purulent rhinitis (arrows). Right, higher magnification image of boxed region showing neutrophils and mucin secretion. **e.** Left, in situ hybridization of sections of wild-type P21 pups using probe to p73. Right, corresponding toluidine blue-stained section. **f.** Histological sections through skulls of P21 p73^{−/−} mice displaying domed crania revealing expansion of ventricles, compression of the cortex (cx) and intracranial haemorrhaging.
in several mouse models, particularly the reeler and scrambler mutants, these phenotypes reflect a generalized defect in neuronal migration affecting lamination in the cortex, hippocampus and cerebellum, and are therefore distinct from the dysgenesis observed in the p73-/- mice. It was thus interesting that in mid-gestation embryos, p73 expression closely mirrored the expression patterns of reelin, a secreted glycoprotein which is essential for neuronal migration in the cortex10-13. In E12.5 animals, for example, cells lining the outer preplate layer of the telencephalic vesicles, the bed nucleus of the stria terminals and the preoptic area (Fig. 3c) all stain positively for both reelin and p73. The correlation between p73 and reelin diverged in the wild-type, postnatal (P3) brain, where the two proteins were found to be co-expressed only in a distinct population of large, bipolar cells, known as the Cajal-Reziu neurons (CR), distributed in a continuous band along the marginal zone of the cortex extending to the molecular layer of the dentate gyrus (Fig. 3d, e). Other sites of reelin expression, including the cerebellum, cortical layer five and the olfactory bulb, were devoid of p73 signal (Fig. 4a). Notably, the p73-/- P3 brain showed an absence of reelin expression specifically in the marginal zone and the molecular layer of the dentate gyrus (Fig. 4b, c), whereas reelin expression in the cerebellum, cortical layer five and the olfactory bulb was similar to that of wild-type mice. In addition to the lack of reelin, we also failed to detect a second CR marker, calretinin, in the cortical and hippocampal marginal zones (data not shown).

These data indicate that functional loss of p73 leads to the disappearance of the CR neurons in the cortical marginal zone and hippocampal molecular layer, and that this defect underlies the hippocampal dysgenesis seen in p73-deficient mice. Notably, the loss of CR neurons in the p73-/- mouse is not accompanied by a cortical lamination defect, as seen in the reeler mouse. Moreover, the hippocampal dysgenesis of p73-/- mice is clearly distinct from the hippocampal defect of the reeler mouse11. Together, these findings indicate that p73-dependent CR neurons produce factors other than reelin to effect hippocampal neurogenesis. The link between the absence of these CR neurons and the strikingly yet highly site-specific dysgenesis in the p73-/- brain further suggests that CR

Figure 3 Hippocampal dysgenesis and reelin expression. a. Comparisons of hippocampal formation of rostral portions of wild-type and p73-/- mice. b. Comparison of hippocampal formation in caudal portions of the brains of wild-type and mutant mice. c. Left, in situ hybridization of p73 probe on E12.5 wild-type brain showing labelling of preplate layer (PPL) of the telencephalic vesicle, choroid plexus (CP), bed nucleus of the stria terminals (BST), and preoptic area (POA). Right, E12.5 brain section following in situ hybridization of a reelin probe, revealing a similar pattern to that seen with the p73 probe with the exception of the choroid plexus. d. Left, p73 immunohistochemistry on sections of wild-type hippocampus revealing cells with nuclear staining (brown) in the molecular layer of the dentate gyrus. dg, dentate gyrus; cl, cortical layer; ob, olfactory bulb; cb, cerebellum. Right, Reelin immunohistochemistry on sections of wild-type hippocampus revealing positive cells surrounded by matrix of secreted reelin (brown) in the molecular layer of the dentate gyrus. e. Left, co-localization of immunohistochemical staining of p73 (brown) and reelin (red) in cells of the marginal zone of the cerebral cortex. Right, higher magnification.

Figure 4 Reelin expression in wild-type and p73-/- P3 mice. a. Left, in situ hybridization of reelin probe on P3 wild-type brain. Right, corresponding stained section. mz, marginal zone; dg, dentate gyrus; cl, cortical layer; ob, olfactory bulb; cb, cerebellum. b. Left, in situ hybridization of reelin probe on P3 p73 mutant brain. Right, corresponding stained sections. Green arrows mark regions of loss of reelin-positive cells in the p73-/- brain. c. Left, in situ hybridization (black granules) of reelin in the wild-type hippocampus. Right, corresponding image in the mutant hippocampus, revealing loss of reelin expression in molecular layer (ml, arrows) of the dentate gyrus (dg), CA1, CA2 and CA3, subregions of pyramidal cell layer. d. Left, p73 in situ hybridization of P21 wild-type hippocampus showing signal at CA3 and CA1 pyramidal neurons and cells in the molecular layer (ml) of the dentate gyrus (dg). Right, corresponding toluidine blue stained section.
cells, widely believed to control cortical neurogenesis, may instead have a critical role in hippocampal development. Finally, p73 expression is maintained in P21 CR neurons of the hippocampal molecular layer (Fig. 4d), indicating that p73 may function in the modelling of persistent neurogenesis of the dentate gyrus throughout adulthood.

The p73-deficient male mice lacked both interest in sexually mature females and aggressive responses to other males. To quantify this defect, 15 p73−/− males, age 6–10 weeks, were housed with three wild-type females each and pregnancies scored after 30 days. Only one pregnancy was obtained from these matings, whereas most females (>90%) housed with wild-type males were pregnant by 30 days. Likewise, no pregnancies were observed in female p73−/− mice that mated with wild-type males, indicating a defect in conceiving or maintaining embryos. No structural abnormalities in the reproductive organs of either male or female p73−/− mice were observed by histology, suggesting, instead, that they might have defects in hormonal or sensory pathways. The highest levels of p73 RNA in the mouse were found in the neuroepithelium of both the embryonic and adult vomeronasal organ (VNO), an accessory olfactory structure involved in pheromone detection (Fig. 5a). Given this, and the behavioural and reproductive abnormalities in p73−/− mice, p73 deficiency might affect VNO function. We examined the expression patterns of the two structurally distinct classes of pheromone receptors present in the VNO, V1R and V2R. The wild-type VNO showed numerous V2R- and V1R-expressing cells, but no cells were positive in the p73−/− VNO (Fig. 5b). Similarly, expression of olfactory cell adhesion molecule (OCAM), a marker of neurosensory cells of the main olfactory epithelium (MOE) and the VNO, was absent from the VNO of p73−/− mice (Fig. 5c). OCAM expression was normal in the MOE of the p73−/− mouse (data not shown), suggesting a site-specific consequence of p73 loss on these related cell populations. The lack of OCAM and V1R and V2R receptors was not attributable to a gross absence of cells in the VNO, as probes for the olfactory marker protein (OMP), expressed by differentiated chemosensory neurons of the VNO and MOE, revealed strong expression in both wild-type and mutant VNOs (Fig. 5d). Finally, the p73 signal was also intense in secondary and tertiary projections of the accessory olfactory system, including the accessory olfactory bulb, the amygdala and hypothalamus (data not shown), suggesting that additional defects in sensory or hormonal pathways may contribute to the reproductive and behavioural phenotypes of p73-deficient mice.

During this work, we carried out necropsies on over 100 p73−/− mice ranging in ages from 2 to 15 months, and found no increased tendency in these mice to develop spontaneous tumours. These data appear to preclude the notion that p73 functions in a manner similar to p53 to suppress tumour development; however, whether ∆N-p73 variants, which potentially counteract p53, modulate p53 activity in the cell remains unresolved.

Our data reveal a marked divergence in the respective developmental activities of p63 and p73 and further distinguish these genes from p53, the most recently evolved member of the family apparently devoted to tumour suppression. Despite these revelations, we know relatively little about specific gene targets for any member of the p53 family of transcriptional activators, or about the in vivo consequences of the predominant p63 and p73 isotypes, which lack tumour suppression activity.

Methods

Targeted disruption of p73 gene in embryonic stem cells

A 16.5 kb phage clone containing the 3′ end of intron 4 to exon 10 was isolated from a Lambda DASH-II 129/SvJae genomic library and subcloned into pZero vector (Invitrogen). To generate the targeting vector, a 1.4 kb V611–V612 fragment, corresponding to exon 5, a portion of exon 6 and adjacent intronic sequences, was deleted and replaced with the neomycin drug-resistance (NRE) gene driven by the mouse phosphoglycerol kinase (PGK1) promoter and linked to the PKG1 poly(A) sequences. The targeting vector contained ~5.5 kb and 2.5 kb of homology upstream and downstream, respectively, of the PGK–NeoR gene and the p53–TK gene at its most 5′ end. The vector was linearized using a unique site and electroporated into mouse ES cells (G418 and FIAU-resistant ES cells were picked and expanded. Two distinct ES cell lines heterozygous for the disrupted allele were microinjected into blastocysts from B6D2F1 and BALB/c mice, and gave rise to germline transmission of the p73 mutation.

In situ hybridization

Frozen sections were post-fixed for 45 min in 4% paraformaldehyde at 4°C, washed twice for 5 min in PBS at 4°C, washed once for 5 min in PBS at room temperature, and dehydrated in 95% ethanol for 1 min. Oligonucleotides were 3′-end labelled with 35S-dATP (Amersham) by terminal transferase (Promega). Radiolabelled probes were added to hybridization solution (10% dextran sulphate, 50% formamide, 1 x Denhardt’s, 4 x SSC, 200 mM dithiothreitol (DTT), 250 μg/ml poly(A)) and incubated overnight at 42°C. Stringency washes were conducted by shaking the slides at 55°C with 1 x SSC, 0.05% sarkosyl (SK), and 10 mM DTT. For the specific oligonucleotides, see Supplementary Information.

DNA transfection and luciferase assays

SK-N-A (human neuroblastoma) cells were transfected with p53–luciferase reporter and p73 expression plasmids using Lipofectamine (Life Technologies). In a typical experiment, 1 μg of reporter plasmid p53RGC-Luc was co-transfected with 70 ng of pcDNA3 containing p73α cDNA and 70, 350 or 700 ng of pcDNA3 containing ∆N-p73α cDNA. The final DNA concentration was adjusted to 1.37 μg per well using pcDNA3. Twenty-four hours after transfection, luciferase activity was measured in cell lysates with the Dual Luciferase Reporter Assay System (Promega).
Gel-shift assays

p73a, p73b, (R293H) or ΔN-p73a CDNA containing pcDNA-3 were transcribed and subsequently in vitro translated using TNT T7-coupled reticulocyte lysate system (Promega). Each DNA-binding reaction contained 2.5 μl of reticulocyte lysate, 2.5 mM of DDT, 10 ng of 32P-labelled DNA, 1 μg of salmon DNA as non-specific competitor, 12 μl of glycerol and Tris-buffered saline (TBS; 25 mM Tris pH 7.5, 130 mM NaCl, 3 mM KCl) to 10 μl final volume. Reactions were incubated at 23 °C for 30 min, cooled to 4 °C and electrophoresed in 4% non-denaturing polyacrylamide gel in a low salt buffer (0.4 x TBE).

Received 14 October 1999; accepted 19 January 2000.

7. Mills, A. A. et al. M. musculus (e-mail: fmckeon@hms.harvard.edu) or D.C. (e-mail: daniel.caput@wanadoo.fr).
8. Correspondence and requests for materials should be addressed to F.M. (Correspondence and requests for materials should be addressed to F.M. (e-mail: fmckeon@hms.harvard.edu) or D.C. (e-mail: daniel.caput@wanadoo.fr).)
9. Supplementary information is available on Nature’s World-Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of Nature.

Acknowledgements

We would like to thank F. Barriello, H. Green, C. Westphal, P. Ferrara, T. Rapport and L. Buck for helpful discussions; L. Du for blotstaining controls; A. Coffinet for the reelin antibody; H. Liu for the mouse genomic library; and J. Williams for histology preparation. This work was supported by the American Cancer Society and the Council for Tobacco Research (F.M.), and the NIH (R.B., A.S., P.D. and F.M.).

Keywords: DNA methylation -- T7 DNA polymerase

Figure 1 Optical trap setup. a. A 1.416-base pair plasmid DNA fragment was prepared as described18 and attached between two beads, one held on the tip of a glass pipette, the other in an optical trap. Single-stranded DNA was obtained by using the force-induced exonuclease activity of T7 DNA polymerase2,3 catalyses DNA replication in vitro at rates of more than 100 bases per second and has a 3′→5′ exonuclease (nucleotide removing) activity at a separate active site. This enzyme possesses a ‘right hand’ shape which is common to most polymerases with fingers, palm and thumb domains4,5. The rate-limiting step for replication is thought to involve a conformational change between an ‘open fingers’ state in which the active site samples nucleotides, and a ‘closed’ state in which nucleotide incorporation occurs6,7. DNA polymerase must function as a molecular motor converting chemical energy into mechanical force as it moves over the template. Here we show, using a single-molecule assay based on the differential elasticity of single-stranded and double-stranded DNA, that mechanical force is generated during the rate-limiting step and that the motor can work against a maximum template tension of 40 pN.