Quality of Spindle-Picked Cotton

Kevin D. Baker and S. Ed Hughes
USDA, ARS, Southwestern Cotton Ginning Research Laboratory
PO Box 578, Mesilla Park, NM 88047 E-mail: kevibake@nmsu.edu

David McAlister
USDA, ARS, Cotton Quality Research Station
PO Box 792, Clemson, SC 29633

James Mackey
Solutions in Processing of Raw Cotton, 3210 Cain, Visalia, CA 93292

Written for presentation at the
2004 ASAE/CSAE Annual International Meeting
Sponsored by ASAE/CSAE
Fairmont Chateau Laurier, The Westin, Government Centre
Ottawa, Ontario, Canada
1 - 4 August 2004

Abstract. Three cotton varieties were grown under furrow-irrigated conditions in southern New Mexico and harvested with three different spindle picker machine/speed combinations. Results for harvest losses and trash content showed a highly significant interaction between variety and machine/speed combination. This interaction caused difficulty in interpreting results from this 1-year study. Therefore, a follow-up study is planned.

Keywords. Cotton ginning, harvesting,
Introduction

Spindle picking of cotton was developed in the 1940’s as a means to speed up and reduce the cost of harvest. Prior to this, all cotton was hand-harvested. Over time, spindle picking has become the preferred method of harvesting most cotton in the U.S. Improvements to spindle pickers over the years have primarily focused on increasing the number of rows that can be harvested with 1 pass of the machine from 1 row to up to 6 rows; as well as increasing the travel speed of the harvester from around 1.5 to up to 4 miles per hour.

Improvements to the cotton harvester have primarily focused on increased capacity in order to reduce the cost of harvesting. As cotton harvesters have gotten bigger and faster, spindle speeds have increased. As the speed has increased, cotton fibers can wrap more tightly around the spindle. Spindle sizes have also decreased in both diameter and length in order to reduce the weight of the picker head. As spindle diameter decreases, cotton fibers will wrap around the spindle more and become tighter on the spindle. As spindle length decreases, cotton plants must be further compressed as they pass through the picking zone. These changes have resulted in a general decrease in cotton fiber quality, particularly regarding spindle twists, preparation, and neps.

Spindle pickers require meticulous adjustment in order to minimize harvest losses and to maximize fiber quality (Williford et al, 1994). Avoiding the harvest of high moisture cotton is another requirement to minimize harvest losses and to maximize fiber quality (Mayfield et al, 1998). Deviations from these highly recommended practices will result in significant quality degradation and increased harvest losses, both of which can cost the grower.

Objective

The objective of this study was:

- To compare fiber quality, harvest losses, and trash content of three varieties of spindle-picked cotton using three machine/speed harvest combinations.

Methods and Materials

Test plots approximately 1.5 acres in area of each of three cotton varieties were grown during the 2003 growing season at the Leyendecker Plant Science Research Center, Las Cruces, New Mexico. The three cotton varieties grown were: Delta Pine 5690, a conventional upland cotton; Acala 1517-99, an upland cotton with enhanced staple length; and Pima S7, a conventional Pima cotton. The Pima cotton was planted on April 23 and the upland varieties were both planted on April 25. All cotton was grown on ridged 40 inch rows and furrow irrigated as needed during the growing season. Chemical herbicides and insecticides were applied as needed and in accordance to customary practice for the growing region; however, no defoliation chemicals were applied.

Upland cotton was harvested during October 28 - 29, 2003. Pima cotton was harvested on November 24, 2003. In each case, two machines were used to harvest the cotton, an International Harvester model 120 1-row spindle picker and an International Harvester model 1822 2-row spindle picker. The model 120 was capable of operating at 2 speeds. Results from the three machine/speed harvest combinations were compared for all three varieties tested. Each test lot consisted of 2 adjacent rows of cotton, each about 750 feet long. Four replications of each combination of test conditions were conducted. Seed cotton harvested from each lot was dumped into a trailer for temporary storage. Two seed cotton samples of about 60 grams each were randomly selected and placed in sealed metal cans for subsequent seed cotton
moisture determination. Black plastic sheeting was placed on top of each lot in order to keep the lots separated for subsequent ginning and fiber quality analysis. Ambient air temperature and relative humidity in a shaded location were measured with a digital psychrometer during the five to ten minutes required to harvest each lot.

Spindles were different for the two machines studied. The 1-row picker used 5/8 inch spindles that had 2 3/4 inches of the spindle tip extend into the picking zone. Picking zone width was adjusted to 3 inches at the narrowest part. Note that this was a larger gap between the spindle tip and the compressor sheet than intended or desired. The 2-row picker used 1/2 inch spindles that had 2 3/8 inches of the spindle tip extend into the picking zone. Picking zone width for the 2-row picker was adjusted to 2 3/4 inches at the narrowest part.

Ground speed of each spindle picker was determined by measuring the time required for the picker to travel 100 feet as it was operating in the field. A proximity tachometer was mounted on the drive shaft to the model 120 1-row picker head to measure its rotational speed. Spindle speeds for the 1-row picker were determined by multiplying the measured drive shaft speed by the appropriate overall gear ratio for the spindle drive. Spindle speeds for the model 1822 2-row picker were obtained from the manufacturer.

Harvest losses were measured using an area frame that measured 40 inches wide (the row width) by 78.5 inches long and enclosed an area of 0.0005 acre. Before the cotton picker passed, the frame was placed across 1 row, with the center of the frame in the row, and any cotton on the ground was cleaned out of the way. The area was marked and the frame removed. After the picker passed, the frame was returned to the same location. Cotton remaining on the plant was hand-picked and collected as a sample and cotton that was on the ground was hand picked and collected as another sample. All samples were weighed, and harvest losses were computed as a percent of the total harvested yield.

Individual seed cotton lots were manually unloaded from the trailers into portable boxes, then weighed, and unloaded from the boxes using a suction pipe during seed cotton cleaning. Seed cotton cleaning equipment included a green boll trap, three separators, two cylinder cleaners, and a stick machine. Dryers in the system were not operated. The cylinder cleaners and stick machine were in a cylinder – stick – cylinder arrangement. All trash removed from the seed cotton was collected and weighed. Weights from each machine from each test lot were recorded so that any possible differences among harvest treatments could be determined. Before cleaning, two seed cotton samples of about 60 grams each were randomly selected and placed in sealed metal cans for subsequent seed cotton moisture determination and an additional two samples of about 250 grams were randomly selected and placed in plastic bags for subsequent fractionation analysis.

Upland cotton test lots (the varieties Delta Pine 5690 and Acala 1517-99) were ginned using a saw gin stand fed by an extractor-feeder. One saw lint cleaner was used. Between the feeder and the gin stand, two seed cotton samples of about 60 grams each were randomly selected and placed in sealed metal cans for subsequent seed cotton moisture determination and an additional two samples of about 250 grams were randomly selected and placed in plastic bags for subsequent fractionation analysis. Two samples of the seed were collected from the seed conveying pipe and placed in sealed moisture cans for subsequent seed moisture, seed germination, seed trash, and seed damage analysis. Just before the ginned lint entered the bale press, two lint samples of about 30 grams each were randomly selected and placed in sealed metal cans for subsequent cotton lint moisture determination. Ginned lint was packaged into bales and shipped to the USDA, ARS, Cotton Quality Research Unit in Clemson, S.C. for HVI, AFIS, trash, rotor spinning, and vortex spinning tests.
Results and Discussion

The model 120 1-row picker operated at an engine speed of 1560 rpm in low drum speed, but engine speed was reduced to 1510 rpm when loaded more at the higher drum speed operation. In both cases, ground speed was 1.9 miles per hour. Spindle speed was 2000 rpm and drum speed was 2.0 miles per hour for low speed operation, but increased to 2890 rpm and 2.75 miles per hour, respectively, when operated at the higher speed (Table 1). Engine speed for the model 1822 2-row picker was 2650 rpm, but ground speed was limited to 1.7 miles per hour. Ground speed could have been greater, but the operator chose to limit ground speed in order to reduce down time due to plugging of the feed unit of the picker head. Spindle speed for this picker was approximately 3000 rpm and drum speed exceeded 2.0 miles per hour.

Table 1. Picker operating speeds.

<table>
<thead>
<tr>
<th>Machine/speed combination</th>
<th>1-row, low speed</th>
<th>1-row, high speed</th>
<th>2-row</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine speed, rpm</td>
<td>1560</td>
<td>1510</td>
<td>2650</td>
</tr>
<tr>
<td>Ground speed, miles per hour</td>
<td>1.9</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Spindle speed, rpm</td>
<td>2000</td>
<td>2890</td>
<td>3000</td>
</tr>
<tr>
<td>Drum speed, miles per hour</td>
<td>2.0</td>
<td>2.75</td>
<td>> 2.0</td>
</tr>
</tbody>
</table>

Harvest generally began around 9:00 each morning and proceeded until 2:00 each afternoon, with a ½-hour lunch break. Ambient air temperature (shade) for the harvest period ranged from 44 to 78 degrees Fahrenheit and relative humidity (shade) ranged from 13 to 23 percent (Table 2). Seed cotton moisture when the cotton was picked was relatively low, ranging from 4.6 to 8.2 percent, dry basis. Variability in air temperature and relative humidity and seed cotton moisture followed typical diurnal patterns, with lower air temperature and higher relative humidity and seed cotton moisture in the morning than in the afternoon (Table 2).

Table 2. Harvest dates, air conditions, and cotton moistures.

<table>
<thead>
<tr>
<th>Cotton variety</th>
<th>Harvest dates</th>
<th>Air temperature, degrees F</th>
<th>Air relative humidity, percent</th>
<th>Seed cotton moisture at harvest, percent d.b.</th>
<th>Lint yield from harvested seed cotton, bales/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta and Pine Land 5690</td>
<td>10/28 - 29</td>
<td>63 – 78</td>
<td>16 – 23</td>
<td>4.6 – 5.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Acala 1517-99</td>
<td>10/28</td>
<td>66 – 75</td>
<td>17 – 21</td>
<td>5.2 – 8.2</td>
<td>2.25</td>
</tr>
<tr>
<td>Pima S7</td>
<td>11/24</td>
<td>44 - 54</td>
<td>13 - 19</td>
<td>5.8 – 7.2</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Results of the harvest losses, gin trash removed, and fiber quality analyses were not yet available at the time this manuscript was written. The meeting presentation will contain further information. Contact the author for additional information.
Conclusion
Specific conclusions will be provided in the meeting presentation. Contact the author for further details.

References

Disclaimer
Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and neither implies recommendation or endorsement by the U.S. Department of Agriculture.