An Analytical Solution to the One-Dimensional Heat Conduction–Convection Equation in Soil

Soil heat transfer occurs by conduction and convection. Soil temperatures below infiltrating water can provide a signal for water flux. In earlier work, analysis of field measurements with a sine wave model indicated that convection heat transfer made significant contributions to the subsurface temperature oscillations. In this work, we used a Fourier series to describe soil surface temperature variations with time. The conduction and convection heat transfer equation with a multi-sinusoidal wave boundary condition was solved analytically using a Fourier transformation. Soil temperature values calculated by the single sine wave model and by the Fourier series model were compared with field soil temperature values measured at depths of 0.1 and 0.3 m below an infiltrating ponded surface. The Fourier series model provided better estimates of observed field temperatures than the sine wave model. The new model provides a general way to describe soil temperature under an infiltrating water source.
(1998) developed a sine wave model with the assumption that temperature-induced viscosity changes of the ponded water led to variations in infiltration flux. Therefore, in Eq. [1], we can describe diurnal variations by assuming that \(w = a_1 + a_2 \sin(\omega t) \), where \(a_1 \) (m h\(^{-1}\)) and \(a_2 \) (m h\(^{-1}\)) are constants and \(\omega \) (rad h\(^{-1}\)) is the angular velocity of the Earth's rotation, resulting in

\[
W' = \left(\frac{\partial k}{\partial z} \right) \frac{C_e}{C_w} a_2 \theta \sin(\omega t) \tag{2}
\]

Assuming that \(\partial k/\partial z \) is constant for a thin soil layer, \(W = a + b \sin(\omega t) \), where \(a \) and \(b \) (m h\(^{-1}\)) are constants, with \(a = \partial k/\partial z \) \(-\) \((C_w/C_e)a_1\theta\) and \(b = \partial k/\partial z \) \((C_w/C_e)a_2\theta\). Equation [1] therefore becomes

\[
\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial z^2} + \left(a + b \sin(\omega t) \right) \frac{\partial T}{\partial z} \tag{3}
\]

Shao et al. (1998) previously derived Eq. [3], although they gave a different physical explanation for \(a \) and \(b \). If \(\partial k/\partial z = 0 \), however, the expressions of \(a \) and \(b \) here are the same as those of Shao et al. (1998). They applied the following initial and boundary conditions to Eq. [3]:

\[
T(z,0) = f(z) \tag{4}
\]

\[
T(x,t) = T_1 \tag{5}
\]

\[
T(0,t) = T_0 + A \sin(\omega t + \Phi) \tag{6}
\]

where \(f(z) \) is the initial temperature distribution in the soil profile, \(T_1 \) is defined as a constant temperature at infinite depth but is usually approximated by the temperature at a relatively large depth, \(T_0 \) is the time-average temperature of the soil surface, \(A \) is the amplitude of surface temperature oscillations, and \(\Phi \) is an initial phase angle (rad). For these conditions, Shao et al. (1998) presented an analytical solution to Eq. [3].

In reality, the diurnal change in soil surface temperature does not strictly follow a single sinusoidal curve. Errors due to the assumption of a single sinusoidal temperature wave at the soil surface can be reduced by using a Fourier series to accurately describe the diurnal variation in surface soil temperature (van Wijk and de Vries, 1963). Fourier series upper boundary conditions have been used with the one-dimensional heat conduction equation to predict soil temperature, and reasonable results have been obtained (Horton et al., 1983; Heusinkveld et al., 2004; Wang et al., 2010). Therefore, in this study, for the one-dimensional heat conduction-convection equation we used the following Fourier series instead of Eq. [6] to describe surface temperature variations:

\[
T(0,t) = T_0 + \sum_{j=1}^{n} A_j \sin(j\omega t + \Phi_j) \tag{6'}
\]

where \(n \) is number of harmonics. When \(n = 1 \), Eq. [6'] is identical to Eq. [6], and Eq. [6] with Eq. [3–5] are identical to the equations used by Shao et al. (1998).

The objectives of this study were (i) to analytically solve Eq. [3] with the initial condition (Eq. [4]) and the general Fourier series surface temperature boundary condition (Eq. [6']) and (ii) to compare field-measured soil temperature values with those calculated with analytical solutions from the surface sine wave model (Eq. [6]) and the Fourier series model (Eq. [6']).

ANALYTICAL SOLUTION

Transformation to a Classical Heat Equation

To obtain a homogeneous boundary condition, we apply the transformation \(T' = T(z,t) - T_1 \) to Eq. [3–5] and Eq. [6'], which become

\[
\begin{align*}
\frac{\partial T'}{\partial t} &= \frac{k}{2} \frac{\partial^2 T'}{\partial z^2} + \left(a + b \sin(\omega t) \right) \frac{\partial T'}{\partial z} \\
T'(0,t) &= T_1 - T_1 + \sum_{j=1}^{n} A_j \left(\sin(j\omega t + \Phi_j) \right) \\
T'(\infty,t) &= 0
\end{align*}
\tag{7}
\]

The term \(a(\partial T'/\partial z) \) then needs to be eliminated from Eq. [7]. This can be done by substituting \(T' = U(z,t)\exp(-\alpha^2 t/4k) \) into Eq. [7], which becomes

\[
\begin{align*}
\frac{\partial U}{\partial t} &= k \frac{\partial^2 U}{\partial z^2} + \frac{ab}{4k} T_0 \sin(\omega t) \frac{\partial U}{\partial z} \\
U(0,t) &= \exp\left(\frac{\alpha^2 t}{4k} \right) \left(T_1 - T_1 + \sum_{j=1}^{n} A_j \sin(j\omega t + \Phi_j) \right), j=1,2,...,n \\
U(\infty,t) &= 0 \\
U(z,0) &= \left(f(z) - T_1 \right) \exp\left(\frac{\alpha z}{2k} \right)
\end{align*}
\tag{8}
\]

To remove the term \(b\sin(\omega t)\partial U/\partial z \) from Eq. [8], we introduce a parameter \(p_1(t) \), which has the dimension of length:

\[
p_1(t) = \frac{b}{\omega} \left[1 - \left(\cos \omega t \right) \right] \tag{9}
\]

If \(Z = z + p_1(t) \), then for \(U(Z,t) \) of Eq. [8], we have \(U(Z,t) = U[Z - p_1(t),t] = V(Z,t) \). The differential relationships with respect to time and depth between \(U \) and \(V \) are given by

\[
\begin{align*}
\frac{\partial U}{\partial t} &= \frac{\partial V}{\partial t} + b \sin(\omega t) \frac{\partial V}{\partial Z} \\
\frac{\partial U}{\partial z} &= \frac{\partial V}{\partial Z} \\
\frac{\partial U}{\partial z} - \frac{\partial V}{\partial Z} &= \frac{\partial V}{\partial Z}
\end{align*}
\tag{10}
\]

Combining Eq. [10] with Eq. [8], we obtain

\[
\begin{align*}
\frac{\partial V}{\partial t} &= k \frac{\partial^2 V}{\partial Z^2} + \frac{ab}{2k} \sin(\omega t) V(Z,t) \\
V[p_1(t),t] &= \exp\left(\frac{\alpha^2 t}{4k} \right) \left(T_1 - T_1 + \sum_{j=1}^{n} A_j \sin(j\omega t + \Phi_j) \right) \\
V[0,t] &= 0 \\
V(0,0) &= \left(f(Z) - T_1 \right) \exp\left(\frac{\alpha Z}{2k} \right)
\end{align*}
\tag{11}
\]

The analytical solution of Eq. [11] may be found by using the Fourier sine transformation, given by

\[V'(p, t) = \int_0^\infty V(Z, t) \sin(pZ) \, dZ \]

where \(p \) is a parameter of the Fourier transformation. By using this transformation, the problem becomes the following initial value problem of an ordinary differential equation:

\[\frac{dV'(p, t)}{dt} = \left[kp^2 + \frac{ab}{2k} \sin(\omega t) \right] V'(p, t) + k \rho \exp\left(\frac{a^2}{4k} \right) \]

\[\times \left[(T_0-T_1) + \sum_{j=1}^n A_j \sin(j \omega t + \Phi_j) \right] \]

\[V'(p, 0) = \int_0^\infty \left[(f(Z) - T_1) \sin(pZ) \right] \, dZ \]

To solve Eq. [13], we first solve the homogeneous equation by using the method of separation of variables, and the explicit analytical solution is expressed as

\[V = \exp\left[-kp^2 t + b_1 \cos(\omega t) \right] \left(V_1' + V_2' + V_3' + V_4' \right) \]

where

\[V_1' = b_1 \exp(b_2 t) \sum_{j=1}^n \left[b_1 A_j \sin(j \omega t + \Phi_j) - b_1 A_j \omega J \cos(j \omega t + \Phi_j) \right] \]

\[V_2' = -b_1 b_2 \sum_{j=1}^n \left[\cos(\Phi_j) V_1' + \sin(\Phi_j) V_2' \right] \]

where

\[V_1' = \frac{1}{2b_1^2 + (j+1)^2} \exp(b_2 t) \]

\[\times b_1 A_j \sin((j+1) \omega t) - (j+1) \omega A_j \cos((j+1) \omega t) \]

\[V_2' = \frac{1}{2b_1^2 + (j-1)^2} \exp(b_2 t) \]

\[\times b_1 A_j \sin((j-1) \omega t) - (j-1) \omega A_j \cos((j-1) \omega t) \]

\[V_3' = \frac{1}{2b_1^2 + (j+1)^2} \exp(b_2 t) \]

\[\times b_1 A_j \cos((j+1) \omega t) - (j+1) \omega A_j \sin((j+1) \omega t) \]

\[V_4' = -b_1 A_j \sin((j-1) \omega t) - (j-1) \omega A_j \sin((j-1) \omega t) \]

\[V_5' = b_1 A_j \cos((j+1) \omega t) - (j+1) \omega A_j \cos((j+1) \omega t) \]

and

\[V_4 = -b_1 b_2 \exp(b_2 t) \frac{b_1 \cos(\omega t) + \omega \sin(\omega t)}{b_1^2 + \omega^2} \]

When \(t = 0 \), \(V(p, 0) = \exp(ab/2k\omega) [V_1(p, 0) + V_2(p, 0)+V_3(p, 0)+V_4(p, 0)+V_5(p, 0)+\epsilon] \). Therefore, \(\epsilon = \exp(-ab/2k\omega) V(p, 0) - [V_1(p, 0)+V_2(p, 0)+V_3(p, 0)+V_4(p, 0)+V_5(p, 0)] \), where \(V(p, 0) = \int_0^\infty [f(z) - T_1] \times \exp(aZ/2k) \sin(pZ) \, dZ \).

To obtain \(V(p, 0) \), we assume

\[f(z) = T + B \exp(-\gamma z) \]

where \(B \) and \(\gamma \) are constant coefficients. Finally, we obtain

\[V'(p, 0) = \frac{b_1}{2k} \left[1 + \frac{1}{2} A_j \cos(\omega t) - (j-1) \omega A_j \sin(\omega t) \right] \]

Then, based on the inverse Fourier transformation, we obtain

\[V'(Z, t) = \frac{2}{\pi} \int_0^\infty V'(p, t) \sin(pZ) \, dp \]

Analytical Solution to the Original Problem

We can now obtain the solution to the original problem (i.e., Eq. [3–5] and [6']). From Eq. [23], we have

\[U(z, t) = \frac{2}{\pi} \int_0^\infty V(p, t) \sin(pZ - p_t(\tau)) \, dp \]

Then \(T(z, t) \) is given by

\[T(z, t) = U(z, t) \exp\left(\frac{aZ - a^2 t}{2k} \right) \]

The solution to the original problem, Eq. [3], is given by

\[T(z, t) = T_1 + T^*(z, t) \]

where \(T_1 \) and \(T^*(z, t) \) are given by Eq. [5] and [25], respectively. Because Eq. [24] is explicit, the final solution (Eq. [26]) is explicit rather than implicit.

The details of the derivation of the Fourier series surface temperature model (Eq. [3–5] and [6']) are presented in the appendix. To evaluate the single sine wave model results and the Fourier series model, we used the field data collected by Jaynes (1990) and reported by Shao et al. (1998).

Field Experiments

Jaynes (1990) provided details on the instruments and the various data processing techniques used in the field experiments. The field data were collected near Phoenix, AZ. The soil was an Avondale clay loam (a fine-loamy, mixed, superactive, calcareous, hyperthermic Tropic Torrifuvents). A teaching-basin method was used to measure the infiltration rate during the experiment. A 6.1- by 6.1-m area was isolated by driving a 0.4-m-wide sheet metal strip 0.2 m into the ground. The center 3.66 by 3.66 m was divided into four subbasins, 1.83 m on each side, with similar metal borders. Soil temperatures were measured hourly with Cu-constantan thermocouples at depths of 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, and 0.6 m. Infiltration rates were measured by flow meters and corrected for changes in measured ponding depth. All of the measurements were continuous for a 120-h period, and they represented typical Arizona springtime conditions.
RESULTS AND DISCUSSION

Initial Temperature, Parameters, and Surface Infiltration

The observed initial soil temperature profile can be approximated by an exponential function (see Eq. [21] and Shao et al., 1998, Fig. 1). The initial temperature is well represented by

\[f(z) = 291.18 \text{ K} + 12.3 \text{ K} \exp(-19.07z) \]

Model parameter values are presented in Table 1. Equations [2–3] require parameters that specify the infiltration rate and the soil thermal diffusivity. In this study, we used the same function as Shao et al. (1998) to express the soil water infiltration rate \(w \) for a nearly saturated soil. Two values, \(V_0 \) and \(V_1 \), obtained by a linear regression presented in Shao et al. (1998), were used to estimate \(w \). Based on the single sine wave model, the infiltration rate with time for this 5-d period was estimated (Fig. 1).

Diurnal Variations in Soil Temperature

Measured and modeled soil surface temperatures are shown in Fig. 2. Shao et al. (1998) modeled daily surface temperature during the 5-d period with a single sine wave function having amplitudes varying from day to day. In this study, daily surface temperature was described with a Fourier series model containing six harmonics, with amplitudes varying from day to day. The Fourier series representation of surface temperature agreed well with the measured values. Physically, the soil surface temperature is influenced by solar radiation, wind speed, and atmospheric stratification stability, and the diurnal variations in the soil surface temperature often cannot be described well by a single sine function. Mathematically, a summation of multi-harmonics agrees with measurements better than does a single sine function not only on clear-sky days but especially for characterizing multiple peaks that can occur in the diurnal variations of soil temperature on partly cloudy days. The six-harmonic Fourier series accurately captures the surface temperature dynamics. For each day, the values of mean temperature, amplitude, and phase angle obtained by fitting measured temperatures with these two models are presented in Tables 2 and 3. The single sine wave model parameters were determined with the approach of Shao et al. (1998), who determined the daily amplitude, \(A \), as equal to half the difference between the daily maximum (\(T_{\text{max}} \)) and the daily minimum (\(T_{\text{min}} \)) surface temperature values. The daily mean temperature was determined as the daily maximum temperature minus the amplitude, \(T_0 = T_{\text{max}} - A \). Once \(A \) and \(T_0 \) were known, the daily phase constant, \(\phi \), was determined by fitting the sine wave model to the measured temperature values.

Figure 3a shows (i) temporal variations of the soil temperature measured at the 0.1-m depth, (ii) the single sine wave model calculations of soil temperature (Shao et al., 1998) at the 0.1-m depth, and (iii) the Fourier series soil temperature model (Eq. [24–26]) at the 0.1-m depth. Figure 3b presents these same values of soil temperature for a depth of 0.3 m. Overall, the Fourier series soil temperature model calculated realistic soil temperatures for both 0.1 and 0.3 m. Figure 4 compares the mod-

Table 1. Model parameter values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat capacity of liquid water ((C_w)), J K(^{-1}) m(^{-3})</td>
<td>(4.18 \times 10^6)</td>
</tr>
<tr>
<td>Saturated soil heat capacity ((C_s)), J K(^{-1}) m(^{-3})</td>
<td>(3.14 \times 10^6)</td>
</tr>
<tr>
<td>Soil thermal diffusivity ((k)), m(^2) h(^{-1})</td>
<td>0.0016</td>
</tr>
<tr>
<td>Angular frequency ((\omega)), rad h(^{-1})</td>
<td>0.2618</td>
</tr>
<tr>
<td>Saturated hydraulic conductivity ((k_s)), m h(^{-1})</td>
<td>0.024</td>
</tr>
<tr>
<td>Coefficient of linear function (V_0), K(^{-1})</td>
<td>0.46</td>
</tr>
<tr>
<td>Coefficient of linear function (V_1), K(^{-1})</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fig. 1. Soil water infiltration rate with time (from Shao et al., 1998).

Fig. 2. Measured soil surface temperature with time, fitted single sine wave model values, and fitted Fourier series model values.

Fig. 3a shows (i) temporal variations of the soil temperature measured at the 0.1-m depth, (ii) the single sine wave model calculations of soil temperature (Shao et al., 1998) at the 0.1-m depth, and (iii) the Fourier series soil temperature model (Eq. [24–26]) at the 0.1-m depth. Figure 3b presents these same values of soil temperature for a depth of 0.3 m. Overall, the Fourier series soil temperature model calculated realistic soil temperatures for both 0.1 and 0.3 m. Figure 4 compares the mod-
eled soil temperatures at depths of 0.1 and 0.3 m with the measured soil temperature values. As depth increased, the scatter in the points increased for the new analytical solution because the field soil profile was not perfectly homogeneous.

Two objective quantitative measures: root mean square error (RMSE) and normalized standard error of the estimates (NSEE) (Willmott et al., 1985) were used to estimate the prediction accuracy. The results in Table 4 indicate that the Fourier series model had lower RMSE and NSEE than the single sine wave model, with the RMSE decreasing from 1.84 to 0.96 K at the 0.1-m depth and from 1.13 to 0.93 K at the 0.3-m depth. The improved estimates of subsurface temperature can be attributed to the improved description of the surface boundary condition.

Although we had access to only one full data set with which to compare the single sine wave and Fourier series models, the results demonstrate the improvement using the Fourier series model over the single sine wave model. The flexibility of the Fourier series model enables it to be applicable to a wide range of soil conditions. The Fourier series model is a continuum model, so it assumes continuum properties and processes. As long as field soil conditions approximate these conditions, the model should perform well in describing soil temperature distributions. If pore-scale processes, such as preferential flow, dominate the soil processes, however, the continuum assumption is violated and the model may not describe well the spatial and temporal variations of conduction and convection heat transfer in the soil.

CONCLUSIONS
The single sine wave model presented by Shao et al. (1998) describing soil temperature beneath an infiltrating water source has been expanded by changing the surface boundary temperature condition from a single sine wave to a multiple sine wave (Fourier) series. The analytical solution for the surface Fourier series condition was obtained using variable substitutions and a Fourier transformation. Subsurface soil temperatures calculated by the single sine wave model of Shao et al. (1998) and by the expanded Fourier series model were compared with field-measured soil temperature values. The Fourier series solution better matched the measured subsurface temperature than did the single sine wave model. The Fourier series analytical solution of the conduction–convection equation is straightforward and should be useful for comparison with numerical solutions of heat conduction–convection through the soil. The analytical solution is also useful for describing temperature distributions under simple, ponded surface conditions.

APPENDIX
To solve the set of Eq. [13], we first solve the homogeneous equation by using the method of separation of variables:

\[
\frac{dV(p, t)}{dt} = - \left[kp^2 + \frac{ab}{2k} \sin(\omega t) \right] V(p, t) \quad \text{[A1]}
\]

The solution is

\[
V(p, t) = e^{\int \left[- \left(kp^2 + \frac{ab}{2k} \sin(\omega t) \right) dt\right]}
= e^{\int \left[-kp^2 \cos(\omega t) \right]}
\quad \text{[A2]}
\]

Table 2. Fourier series model values of amplitude A, phase angle ϕ, and mean temperature T0 for daily surface temperatures.

<table>
<thead>
<tr>
<th>Harmonic (n)</th>
<th>Day 1 (T_0 = 293.45)</th>
<th>Day 2 (T_0 = 294.46)</th>
<th>Day 3 (T_0 = 294.70)</th>
<th>Day 4 (T_0 = 294.00)</th>
<th>Day 5 (T_0 = 295.20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (\phi)</td>
</tr>
<tr>
<td>1</td>
<td>6.13 3.94</td>
<td>6.59 10.37</td>
<td>6.50 3.96</td>
<td>5.06 4.17</td>
<td>7.41 4.04</td>
</tr>
<tr>
<td>2</td>
<td>2.82 0.69</td>
<td>2.75 7.16</td>
<td>2.34 0.78</td>
<td>1.40 0.65</td>
<td>2.12 0.53</td>
</tr>
<tr>
<td>3</td>
<td>0.64 3.40</td>
<td>0.24 4.27</td>
<td>0.33 3.88</td>
<td>0.08 2.03</td>
<td>0.29 −0.09</td>
</tr>
<tr>
<td>4</td>
<td>0.36 1.39</td>
<td>0.50 3.01</td>
<td>0.18 0.19</td>
<td>0.22 3.60</td>
<td>0.68 3.31</td>
</tr>
<tr>
<td>5</td>
<td>0.27 4.23</td>
<td>0.34 0.88</td>
<td>0.05 1.18</td>
<td>0.39 −4.99</td>
<td>0.19 4.80</td>
</tr>
<tr>
<td>6</td>
<td>0.20 1.06</td>
<td>0.20 −0.43</td>
<td>0.14 3.76</td>
<td>0.22 4.78</td>
<td>0.13 0.31</td>
</tr>
</tbody>
</table>

Table 3. Single sine wave model values of amplitude A, phase angle ϕ, and mean temperature \(T_0 \) for daily surface temperatures.

<table>
<thead>
<tr>
<th>Day 1 (T_0 = 295.33)</th>
<th>Day 2 (T_0 = 295.59)</th>
<th>Day 3 (T_0 = 296.38)</th>
<th>Day 4 (T_0 = 295.44)</th>
<th>Day 5 (T_0 = 297.11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (\phi)</td>
</tr>
<tr>
<td>7.28 0.84</td>
<td>7.55 1.26</td>
<td>7.20 −2.50</td>
<td>5.26 −2.30</td>
<td>7.56 −2.70</td>
</tr>
</tbody>
</table>

Fig. 3. Comparison of field measured soil temperatures at the (a) 0.1-m depth and (b) 0.3-m depth; temperatures calculated by a single sine wave model (Shao et al., 1998) and by a Fourier series model.
where c is a constant of integration. The method of variation of parameters is applied to Eq. [A2] for solving Eq. [13], i.e., let

$$V(p,t) = Y \exp \left[-k p^2 T + \frac{ab}{2k} \cos(\omega t) \right]$$

which is a variable rather than a constant. Thus the partial differential equation of $V(p,t)$ with respect to time is

$$\frac{\partial V}{\partial t} = \frac{\partial Y}{\partial t} \exp \left[-k p^2 T + \frac{ab}{2k} \cos(\omega t) \right] + Y \left[-k p^2 T + \frac{ab}{2k} \sin(\omega t) \right] \exp \left[-k p^2 T + \frac{ab}{2k} \cos(\omega t) \right]$$

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

This can be simplified to

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

Integrating Eq. [A5], we obtain

$$Y = \left\{ k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right] \right\} dt + c$$

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

Integrating Eq. [A5], we obtain

$$Y = \left\{ k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right] \right\} dt + c$$

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

Integrating Eq. [A5], we obtain

$$Y = \left\{ k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right] \right\} dt + c$$

$$\frac{\partial Y}{\partial t} = k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right]$$

Integrating Eq. [A5], we obtain

$$Y = \left\{ k p \left[(T_0 - T_i) + \sum_{j=1}^{\infty} A_j \sin(j \omega t + \Phi_j) \right] \times \exp \left[k p^2 T - \frac{ab}{2k} \cos(\omega t) + \frac{a^2 t^2}{4k} \right] \right\} dt + c$$
Substituting Eq. [A6] into Eq. [A3] leads to

$$V'(p, t) = \exp \left[-k p^2 t - \frac{ab}{2k \omega} \cos(\omega t) \right] (M + f + t) \quad [A7]$$

where

$$M = k p(T_0 - T_1) \int \exp \left[\frac{a^2}{4k} t + k p^2 t - \frac{ab}{2k \omega} \cos(\omega t) \right] dt \quad [A8]$$

and

$$f = k p \sum_{j=1}^{N} A_j \sin \left(j \omega t + \Phi_j \right) \quad [A9]$$

$$\times \exp \left[\frac{a^2}{4k} t + k p^2 t - \frac{ab}{2k \omega} \cos(\omega t) \right] dt$$

To complete the solution of Eq. [A7], we have to determine M and f. When $(ab/2k \omega) \cos(\omega t) \ll 1$, the following approximate equation can be applied to Eqs. [A8–A9]:

$$\exp \left[-\frac{ab}{2k \omega} \cos(\omega t) \right] \approx 1 - \frac{ab}{2k \omega} \cos(\omega t) \quad [A10]$$

We let

$$\begin{align*}
b_1 &= k p \\
b_2 &= \frac{a^2}{4k} + k p^2 \\
b_3 &= \frac{ab}{2k \omega} \\
b_4 &= k p(T_0 - T_1)
\end{align*}$$

then

$$M = k p(T_0 - T_1) \left[\exp \left(\frac{a^2}{4k} t + k p^2 t \right) \right] \left[1 - \frac{ab}{2k \omega} \cos(\omega t) \right] dt$$

$$= b_1 \int \exp(b_2' t) dt - b_1 \int \cos(\omega t) \exp(b_3' t) dt$$

$$= b_1 \left[\exp(b_2' t) - b_1 \frac{b_2'}{b_3'} \sum_{j=1}^{N} A_j \sin(j \omega t + \Phi_j) \exp(b_3' t) dt \right]$$

Then let

$$N = -b_1 \frac{b_3'}{b_4'} \cos(\omega t) \exp(b_3' t) dt$$

$$= b_3' \cos(\omega t) \exp(b_3' t) - b_3' \frac{b_3'}{b_4'} \sin(\omega t) \exp(b_3' t) dt$$

$$= b_3' \cos(\omega t) \exp(b_3' t) - b_3' \frac{b_3'}{b_4'} \sin(\omega t) \exp(b_3' t) dt$$

Simplifying, we have

$$N = -b_1 b_3' \frac{b_3'}{b_4'} \cos(\omega t) \exp(b_3' t) dt$$

$$= -b_1 b_3' \frac{b_3'}{b_4'} \cos(\omega t) \exp(b_3' t) dt$$

Substituting Eq. [A13] into Eq. [A12], we obtain

$$M = \frac{b_1 b_3'}{b_2'} \exp(b_2' t)$$

$$= b_1 b_3' \frac{b_3'}{b_4'} \cos(\omega t) \exp(b_3' t) dt$$

In the same way,

$$f = k p \sum_{j=1}^{N} A_j \sin(j \omega t + \Phi_j) \times \exp(b_2' t)$$

$$= k p \sum_{j=1}^{N} A_j \sin(j \omega t + \Phi_j) \times \exp(b_2' t)$$

where

$$J_j = \int \sum_{j=1}^{N} A_j \sin(j \omega t + \Phi_j) \exp(b_2' t) dt$$

$$= \sum_{j=1}^{N} J_j(t)$$

Then

$$J_j(t) = \int A_j \sin(j \omega t + \Phi_j) \exp(b_2' t) dt$$

so that

$$J_j(t) = \exp(b_2' t) \left[\frac{b_3' A_j \sin(j \omega t + \Phi_j) - j \omega A_j \cos(j \omega t + \Phi_j)}{b_3' \left(j \omega \right)^2} \right]$$

Substituting Eq. [A17] into Eq. [A16] results in

$$J_j(t) = \exp(b_2' t)$$

$$= \sum_{j=1}^{N} \left[b_3' A_j \sin(j \omega t + \Phi_j) - j \omega A_j \cos(j \omega t + \Phi_j) \right]$$

where

$$[A18]$$
In Eq. [A15],

\[f_2 = \sum_{j=1}^{n} A_j \cos(\omega t + \Phi_j) \exp(b_j t) dt = \sum_{j=1}^{n} A_j \cos(\omega t) \sin(j \omega t + \Phi_j) \exp(b_j t) dt \]

[A19]

\[= \sum_{j=1}^{n} f_2(j) \]

where

\[f_2(j) = \int A_j \cos(\omega t) \sin(j \omega t + \Phi_j) \exp(b_j t) dt = \int A_j \cos(\omega t) \times [\sin(j \omega t) \cos(\omega t) \sin(\omega t)] \exp(b_j t) dt = \cos(\Phi) \int \exp(b_j t) A_j \cos(\omega t) \sin(j \omega t) \exp(b_j t) dt + \sin(\Phi) \int \exp(b_j t) \cos(j \omega t) \exp(b_j t) dt = \cos(\Phi) f_2^{(j)}(j) + \sin(\Phi) f_2^{(j')}(j) \]

Therefore,

\[f_2^{(j)} = \int \exp(b_j t) A_j \cos(\omega t) \sin(j \omega t) \exp(b_j t) dt \]

[A20]

\[= \frac{1}{2} \int \exp(b_j t) A_j \sin(j \omega t) \exp(b_j t) dt + \frac{1}{2} \int \exp(b_j t) A_j \cos(j \omega t) \exp(b_j t) dt \]

where

\[\int \exp(b_j t) A_j \sin(j \omega t) \exp(b_j t) dt = \frac{\exp(b_j t) A_j \sin(j \omega t)}{b_j^2 + (j+1)^2 \omega^2} \]

[A21]

\[- (j+1) \omega A_j \cos(j \omega t) \]

[A22]

and

\[\int \exp(b_j t) A_j \cos(j \omega t) \exp(b_j t) dt = \frac{-\exp(b_j t) A_j \cos(j \omega t)}{b_j^2 + (j+1)^2 \omega^2} \]

[A23]

Substituting Eq. [A21–A22] into Eq. [A20] gives

\[f_2 = \frac{1}{2} \exp(b_j t) A_j \sin[j \omega t] \exp(b_j t) \]

[A24]

\[- (j+1) \omega A_j \cos[j \omega t] \]

[A25]

where

\[\int \exp(b_j t) A_j \cos[j \omega t] \exp(b_j t) dt = \frac{\exp(b_j t) A_j \cos[j \omega t]}{b_j^2 + (j+1)^2 \omega^2} \]

[A26]

and

\[\int \exp(b_j t) A_j \sin[j \omega t] \exp(b_j t) dt = \frac{-\exp(b_j t) A_j \sin[j \omega t]}{b_j^2 + (j+1)^2 \omega^2} \]

[A27]

Substituting Eq. [A26] and [A27] into Eq. [A25] yields

\[f_2 = \frac{1}{2} \exp(b_j t) A_j \sin(j+1) \omega t \exp(b_j t) \]

[A28]

\[- (j+1) \omega A_j \sin[j \omega t] \]

The value of \(f_2 \) can be therefore obtained by substituting Eq. [A24] and [A28] into Eq. [A20].

Returning to Eq. [A7],

\[V_0' = \exp[-kp_0 + b_0 \cos(\omega t)](M + f + c) \]

[A29]

\[= \exp[-kp_0 + b_0 \cos(\omega t)](V_1 + V_2 + V_3 + V_4) \]

where \(V_1, V_2, V_3, \) and \(V_4 \) were defined in the main text.

As mentioned in the main text, the initial soil temperature with depth can be approximated by Eq. [21]. Then

\[f(Z) = T_0 + B \exp[-T_1(Z - p_0(t=0))] \]

[A30]

Because \(p_1(t=0) = 0, \)

\[f(Z) = T_0 + B \exp[-T_1(Z)] \]

[A31]

Therefore,

\[V_0' = \int [f(Z) - T_0] \exp\left[-\frac{T_1}{2k}Z\right] \sin(pZ) dZ \]

[A32]

\[= \int B \exp[-T_1(Z)] \exp\left[-\frac{T_1}{2k}Z\right] \sin(pZ) dZ \]

where
\[
\int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\sin(pZ)\,dZ = \\
-\sin(pZ)\frac{1}{q+a/2k}\exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\bigg|^\infty_0 \\
+\frac{p}{q+a/2k}\int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\cos(pZ)\,dZ \\
-\sin(pZ)\frac{1}{q+a/2k}\exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\bigg|^\infty_0
\]
\[= \lim_{Z \to \infty} \left[-\sin(pZ)\frac{1}{q+a/2k}\exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\right] = 0 \tag{A33}\]

and
\[
\frac{p}{q+a/2k}\int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\cos(pZ)\,dZ = \\
-\frac{p}{(q+a/2k)^2}\exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\bigg|^\infty_0 \\
-\frac{p^2}{(q+a/2k)^2}\exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\bigg|^\infty_0 \\
\times \int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\sin(pZ)\,dZ
\]
\[= \frac{p}{(q+a/2k)^2} - \frac{p^2}{(q+a/2k)^2} \tag{A35}\]

Substituting Eq. [A34–A35] into Eq. [A33] yields
\[
\int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\sin(pZ)\,dZ = \frac{p}{(q+a/2k)^2} - \frac{p^3}{(q+a/2k)^2} \\
\times \int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\sin(pZ)\,dZ
\]
i.e.,
\[
\int_0^\infty \exp\left[-\left(\frac{q+a}{2k}\right)Z\right]\sin(pZ)\,dZ = \frac{p}{(q+a/2k)^2 + p^2}
\]

Finally, we obtain Eq. [22].

ACKNOWLEDGMENTS
This study was supported by the National Program on Key Basic Research Project of China (973) under Grants no. 2010CB428502 and 2012CB417203, by the China Meteorological Administration Grant GYHY201006024, by NSFC no. 40975009, by the CAS Strategic Priority Research Program Grant XDA05110101, and by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank Dr. Mingan Shao for providing helpful comments. We are very grateful to four anonymous reviewers for their careful review and valuable comments, which led to substantial improvement of this manuscript.

REFERENCES