Reduction of Fumonisin B₁ in Corn Grits by Twin-Screw Extrusion

Lauren S. Jackson, Joseph Jablonski, Lloyd B. Bullerman, Andreia Bianchini, Milford A. Hanna, Kenneth A. Voss, April D. Hollub, and Dojin Ryu

Abstract: This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Based on the mass balance analysis, it was found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing <15% of the total FB₁ species present. Less than 46% of FB₁ originally present in corn grits could be detected in the fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products.

Keywords: fumonisin, N-(deoxy-D-fructos-1-yl) fumonisin, reduction, twin-screw extrusion

Practical Application: Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose.

Introduction

Fusarium verticillioides and F. proliferatum commonly infect corn (maize) in all corn-growing regions in the world (Marasas 2001). These ubiquitous fungi are known to produce fumonisins, among which fumonisin B₁ (FB₁) is of the most concern due to its prevalence and toxicity. FB₁ has been found in many processed corn-based products, such as corn grits, corn flakes, fried tortilla chips, and baked products (Castelo and others 2001; Voss and others 2001; Brera and others 2004; Humpf and Voss 2004). FB₁ has been associated with various diseases in animals and correlated with human esophageal cancer rates in certain regions of the world where corn is consumed as a staple food (Rheeder and others 1992; Chu and Li, 1994; Haschek and others 2001). In addition, epidemiological and experimental evidence suggest that fumonisins are a possible risk factor for neural tube defects, and their teratogenic potential was elucidated with laboratory animals (Gelineau-van Waeys and others 2005; Misset and others 2006).

While FB₁ is very heat stable and survives conventional heat processes, such as baking and frying (Jackson and others 1997), previous studies suggest that extrusion may reduce the toxin in finished food products (Katta and others 1999; Pineiro and others 1999). Bullerman and others (2008) studied the effect of single-screw extrusion on the reduction of FB₁ in corn grits in the presence and absence of glucose. The results indicated that the extrusion process reduced the amount of FB₁ by 21% to 37% in the absence of sugar, while the addition of glucose further decreased the toxin by 77% to 87%. It was also reported that 35% to 43% of FB₁ in extruded grits, and 65% to 78% of FB₁ in extruded grits with glucose could not be detected in the form of known fumonisin degradation products such as hydrolyzed FB₁ (HFB₁), N-(deoxy-D-fructos-1-yl)-FB₁ (NDF-FB₁), N-(carboxymethyl)-FB₁ (NCM-FB₁) using conventional analytical methods.

During thermal processes, such as extrusion, fumonisins are believed to react with reducing sugars to form sugar adducts such as NDF-FB₁, NCM-FB₁, and other N-substituted FB₁ compounds that can be detected by LC-mass spectrometry (LC-MS) (Murphy and others 1996; Lu and others 2002; Poling and others 2002; Bullerman and others 2008). Thermal processing may also result in the binding of FB₁ to proteins and starches in the food matrix to cause reduction in recovery (Kim and others 2003; Seeffelder and others 2003). Several methods using detergents and alkaline hydrolysis, have been developed to improve recovery of these “hidden” or “masked” fumonisins in thermally processed food (Kim and others 2003; Seeffelder and others 2003).
Fate of fumonisin B_1 during extrusion...

Over the past 40 y, the use of twin-screw extruders has increased due to an enhanced desire for innovative food products, particularly breakfast cereals and snack foods. In comparison with single-screw extrusion, the twin-screw configuration has greater ability and flexibility to control process and product parameters (Riaz 2001). Although there have been published studies on the fate of fumonisins in foods processed with single-screw extruders, little information exists on the stability of fumonisins during twin-screw extrusion, particularly about the levels of matrix-bound fumonisins in extruded corn grits. The main objective of this study was to use a mass balance approach to evaluate the fate of FB$_1$ during twin-screw extrusion of corn grits with and without glucose supplementation. Methods to measure the levels of matrix-bound FB$_1$ in addition to HFB$_1$ and a N-substituted FB$_1$ analogue were used in an attempt to account for loss of the toxin during extrusion processing.

Materials and Methods

Preparation of contaminated grits
Food grade corn grits (nr. 4 flaking grits) were provided by Bunge Milling (Crette, Nebr., U.S.A.) and were screened for the presence of fumonisins prior to inoculation with fungi. To produce contaminated corn grits, 1 kg of grits was weighed into 1-gallon size glass jars. Two sheets of filter paper (Whatman nr. 1) were placed on the mouth of each jar. Each jar was clapped with a lid that had a 7.6-cm dia hole to facilitate air flow for fungal growth, and then autoclaved for 1 h at 121 °C. Following equilibration overnight, the moisture content was adjusted to 30% (w/w; dry weight basis, db) by adding sterile distilled water in 2 steps (half and half) within a 24-h period to ensure even distribution of moisture.

For inoculation on corn grits, F. verticillioides M-2552 was grown on carnation leaf agar (CLA) in Petri plates for 7 to 10 d and one-half of the agar with spores was added to each jar. The jars were shaken daily to prevent clumping and provide good air exchange in the mass of grits. The production of fumonisin was monitored with Veratox® enzyme-linked immunosorbent assay (ELISA) kits (Neogen Corp., Lansing, Mich., U.S.A.). When batches of grits reached the desired fumonisin concentration, they were pooled and mixed. Two batches of grits containing 10 and 50 μg/g FB$_1$ were produced by mixing clean grits with contaminated grits using a paddle mixer. Uncontaminated, clean grits were designated as negative (unextruded) and positive (extruded) controls.

Extrusion of corn grits
Uncontaminated clean grits and contaminated grits were extruded with or without addition of food grade glucose (ADM Corn Processing, Decatur, Ill., U.S.A.). The level of added glucose and the moisture content of all treatments were set to 10% (w/w) and 20% (w/w; db), respectively, which showed greatest effect in reducing fumonisin concentration during extrusion in previous studies (Katta and others 1999; Castelo and others 2001). Extrusion was carried out using a model CTSE-V twin-screw extruder (C.W. Brabender, South Hackensack, N.J., U.S.A.) with a 3-mm nozzle. The screw speed was 40 rpm and the temperatures of the barrel were set at 50, 140, and 160 °C for the feed zone, metering zone, and compression zone, respectively.

During the extrusion process, parameters including torque, temperature, pressure, and output were recorded. An equal amount of unextruded grits was kept for each sample for comparison. The extruded and unextruded samples were ground using a Romer Sampling Mill (Model 2A, Romer Labs, Union, Mo., U.S.A.) and separated into portions for LC-fluorescence and LC-MS analyses.

Analysis of fumonisins
Solvents used for solid phase extraction and for highperformance liquid chromatography (HPLC) mobile phases were of HPLC grade from Fisher Scientific (Pittsburgh, Pa., U.S.A.) or Acros Organics (Morris Plains, N.J., U.S.A.). Formic acid (Puriss grade) was from Fluka (St. Louis, Mo., U.S.A.), while hydrochloric acid and potassium chloride (certified ACS grade) were purchased from Fisher Scientific. Orthophthalaldialdehyde (OPA), 2-mercaptoethanol, and sodium tetaborate dehydrate (borax) were from Sigma Chemical (St. Louis, Mo., U.S.A.). Deionized water was used to prepare solvent for extraction.

FB$_1$ used to prepare calibration standards and for recovery experiments was purchased from Sigma (98% pure), while fumonisin B$_2$ (FB$_2$), fumonisin B$_3$ (FB$_3$), and hydrolyzed fumonisin B$_1$ (HFB$_1$) (all >95% pure) were kindly provided by the Mycotoxin Team of FDA/CFSAN, College Park, Md., U.S.A. NDF-FB$_1$ (>95% pure) was supplied by Steven Poling of USDA/NCAUR (Peoria, Ill., U.S.A.). Stock solutions containing 1.0 mg/mL of the individual fumonisin standards were prepared in acetonitrile:water (1:1, v/v). Mixed standards containing all 5 forms of fumonisin were prepared by serial dilution in the same solvent in the range of 0.01 to 10.00 μg/mL. Standards, stored in amber vials at 5 °C, were used to spike control samples for recovery studies and for instrument calibration.

Extraction/purification of fumonisins for LC-fluorescence and LC-MS
Unbound forms of fumonisins (FB$_1$, FB$_2$, FB$_3$, HFB$_1$, NDF-FB$_1$) were extracted from samples and purified using the method described previously by Bullerman and others (2008). The method of Park and others (2004) with modifications was used to extract and purify bound FB$_1$ in samples. Briefly, fumonisin-contaminated corn grits (1.0 g) were extracted with 50 mL of acetonitrile:methanol:water (25:25:50, v/v) in 50-mL polypropylene tubes to remove unbound fumonisins. Contents of the tubes were filtered through Whatman nr. 541 filter paper. The solid material remaining on the filter paper was re-extracted with 50 mL of acetonitrile:methanol:water (25:25:50, v/v). The filtrates were discarded, while the solid material obtained after extraction of unbound fumonisins was treated with KOH to hydrolyze bound FB$_1$ to HFB$_1$, which was then extracted and quantified by LC-fluorescence. First, the solid corn residue remaining after extraction was transferred to a 250-mL Erlenmeyer flask, and 25-mL of 2 N KOH was added. The flask was held in a shaking (140 rpm) water bath at 60 °C for 1 h. The hydrolysate was diluted with 50 mL of 25:25:50 methanol:acetonitrile:water, and then placed in a shaker (room temperature) set at 140 rpm for 30 min. The hydrolysate was centrifuged at 10000 × g for 10 min, and then 10 mL of the supernatant fluid was applied to a preconditioned OASIS HLB (Waters; Milford, Mass., U.S.A.) SPE column, and vacuum was applied until the liquid level was just above the bed of the cartridge. The cartridge was washed with 3 mL of methanol:water (20:80, v/v), 3 mL of methanol:water (50:50, v/v), followed by 3 mL methanol:water (67:33, v/v), HFB$_1$ was eluted from the column with 1-mL methanol:water (75:25, v/v), followed by 3 mL methanol:8% acetic acid (75:25, v/v). Eluates were combined and then evaporated to dryness under nitrogen using a Turbovap LV system (Biotage; Charlotte, N.C., U.S.A.)
set at 40 °C. The dry residues were redissolved in 1-mL acetonitrile:water (70:30, v/v) and analyzed by LC-fluorescence to determine concentrations of HFB1. Bound FB1 was estimated from HFB1 by multiplying the concentration of HFB1 by the mass ratio of FB1:HFB1 (721.8:405.6). It was assumed that HFB1 released during the alkaline hydrolysis step was due to matrix-bound FB1 rather than matrix-bound HFB1, since TCA side chains believed to be responsible for binding to the food matrix are not present in HFB1.

LC-fluorescence and LC-MS analysis of fumonisins
Quantitative determination of FB1, FB2, FB3, and HFB1 in sample extracts was based on the method of Thakur and Smith (1996) using OPA derivitization as described by Shephard and others (1990). Analyses were carried out with a Waters HPLC system equipped with an Alliance 2695 solvent module and a model 2475 fluorescence detector (λex = 335 nm; λem = 440 nm; gain = 10). The autosampler was programmed to mix 10 μL of sample extracts with 20 μL of OPA reagent, incubate the mixture for 2 min, and then inject 10 μL of the derivatized samples. Separations were carried out at 35 °C on a 150 x 3 mm² i.d. Supelcool LC-18-DB column (Supelco; Bellafonte, Pa., U.S.A.). The mobile phases were acetonitrile:water:acetic acid (30:69:1, v/v/v) (solvent A) and acetonitrile:water:acetic acid (60:39:1, v/v/v) (solvent B) and the flow rate was 0.6 mL/min. The initial mobile phase was 60.40 solvent A:solvent B. This solvent mixture was kept constant for 5 min, and then levels of solvent B were increased to 50% over a period of 5 min. After 5 min, levels of solvent B were increased to 80% over a 10-min period. After 5 min, the column was equilibrated for 3 min at the initial mobile phase. Calibration standards for fumonisins were injected in the range of 0.05 to 2.5 μg/mL.

A Waters HPLC equipped with an Alliance 2695 solvent module, ZQ mass detector, and Empower software was used to identify and quantify NDF-FB1 in sample extracts. The MS was operated in positive ESI mode with scan time of 0.5 s, a dwell time of 0.5 s, a capillary voltage of 3000 V, and a cone voltage of 30 V. The instrument was operated in single ion mode (SIM) for NDF-FB1 (M+H; m/z = 884.4). Separations were carried out at 35 °C on a 150 x 3 mm² i.d. Supelcool LC-18-DB column with 10-μL injection volume. The mobile phases were acetonitrile:40 mM formic acid (10:90, v/v) (solvent A) and acetonitrile:40 mM formic acid (90:10, v/v) (solvent B). The flow rate was 0.5 mL/min and the column temperature was 35 °C. The initial mobile phase was solvent A:solvent B (75:25, v/v). Levels of solvent B were increased linearly to 75% over 10 min and this mixture was held for 2 min. The column was equilibrated at the initial conditions at a flow rate of 1.0 mL/min for 3 min.

Statistical analysis
Extrusion parameters for each treatment (batch of grits) were analyzed for statistical differences using 1-way ANOVA followed by Tukey’s multiple comparison test with a family-wise error rate of 0.05. All analyses for fumonisin analogues were done in triplicate. Means and standard deviations were calculated with Minitab® (State College, Pa., U.S.A.) statistical software for the LC-fluorescence and LC-MS analysis.

Results and Discussion
Extrusion of corn grits
Conditions used during the extrusion process that may affect fumonisin reduction are summarized in Table 1. The moisture content and temperature are regarded as the main factors affecting expansion ratio while other factors including protein content may play an important role (Bhattacharya and others 1986; Scudamore and others 2008). The variations in expansion ratio may be attributed to relative protein contents since the moisture content and temperature of samples were kept constant. The pressure in the extruder barrel was also influenced by the torque (R² = 0.7301) suggesting the effect of matrix, that is, relative protein content, and presence of glucose. The relative protein content in contaminated grits tends to be greater than that of clean grits since carbohydrate is preferred source of nutrient for the growth of mold. In addition, the expansion ratios had a high degree of correlation with the torque (R² = 0.9291, Figure 1).

In general, differences in values of observed parameters may be attributed to the composition of the samples and presence of glucose since the screw speed, moisture content, and temperature were controlled in this study. For example, extrusion with glucose supplementation led to reduced torque and pressure, and resulted in lower expansion ratio in comparison with the samples extruded without glucose. The torque is mainly dependent on the viscosity of the matrix in the barrel when the screw speed is constant. Considering the melting point of glucose (146 °C), added glucose may act as a plasticizer to reduce the viscosity and torque at the temperature employed during extrusion (160 °C). Nonetheless, the reductions in torque and pressure were 34% and 24% in Batch 1 and 54% and 29% in Batch 2, respectively, suggesting that the addition of glucose (10% w/w) was not the only contributing factor.

Analyses of fumonisin and degradation products
by LC-fluorescence and LC-MS
Extruded and unextruded clean grits were spiked at levels of 1.0, 5.0, and 10.0 μg/g with each of the fumonisin standards to estimate the amount of each unbound fumonisin analogue recovered using the analytical procedure. Mean recoveries (±RSD) for FB1, FB2, FB3, HFB1, and NDF-FB1 were 102 ± 17%, 92 ± 20%, 100 ± 12%, 72 ± 29%, and 97 ± 22% for 6 analyses with an LOQ of 0.2 μg/g for all species. For the samples without added glucose (batch 1; batch 2), levels of unbound FB1 decreased by 63% to 71% after extrusion (Table 2). Extrusion of the corn grits after addition of glucose resulted in substantial (88% to 94%) reduction in FB1 levels. Similarly, extrusion alone resulted in 26% to 73% reduction in FB2 and FB3 levels, while levels of both toxins were reduced by >89% in extruded corn-containing glucose, suggesting that they likely also interacted with glucose to form N-fructosyl derivatives.

HFB1 and NDF-FB1 were quantified as the major reaction products for FB1 in extruded corn-containing glucose. Of these forms in extruded contaminated corn with added glucose, NDF-FB1 was the dominant species, while HFB1 was a minor reaction product. There were no attempts to measure levels of NCM-FB1 in the extruded corn samples since an analytical standard for NCM-FB1 was not available, and previous studies (Seefelder and others 2001; Bullerman and others 2008) indicated that this fumonisin analogue is a minor reaction product in thermally processed corn products containing added sugars.
Bullerman and others (2008) reported that single-screw extrusion decreased FB1 levels in corn grits by 21% to 37%, and 77% to 87% in grits supplemented with glucose, while Castelo and others (2001) showed apparent losses of FB1 with and without added glucose were 35% to 46% and 55% to 68%, respectively. The improved efficacy of twin- in contrast to single-screw extrusion in reducing fumonisin levels may be a result of more complete mixing of sample in the barrel of a twin-screw extruder (Connelly and Kokini 2007). Other studies have demonstrated that the stability of fumonisins during extrusion is influenced by several factors, including the screw configuration, screw speed, extrusion temperature, and moisture content of the food matrix (Katta and others 1999; Scudmore and others 2008).

It was hypothesized that the apparent loss of fumonisins in extruded samples may have been due, at least in part, to binding of FB1 to polysaccharides and proteins in corn during heating. To test this hypothesis, the method developed by Park and others (2004) was used to measure bound FB1 in unextruded and extruded samples. Initial experiments estimated recovery of bound FB1 during the hydrolysis/extraction procedure by spiking clean grits and clean, extruded grits with 1.0 and 10.0 μg/g FB1 after the steps used to extract unbound fumonisins from the samples. Mean (±RSD) recovery of FB1, as determined as HFB1 after alkaline hydrolysis of the samples, was 83.2 ± 9.9% (n = 7). No significant difference was found in the recoveries of FB1 spiked into unextruded and extruded grit samples.

Table 3 shows the levels of bound FB1 in contaminated grits before and after extrusion. As expected, no bound fumonisin was found in the grits before extrusion. However, extruded grits contained considerable amounts of bound FB1, with levels roughly equal to those of unbound FB1. Similar to the results presented here, Kim and others (2003) and Park and others (2004) found higher levels of bound FB1 in corn-based breakfast cereals, tortilla chips, and corn chips compared with unbound FB1. In contrast, with our results, Dall’Asta and others (2009) reported the presence of bound fumonisins in corn flour and other corn products that did not receive a thermal treatment.

Fumonisins undergo reactions in foods during processing that alter their bioavailability, toxicity, and/or ability to be detected (Murphy and others 1996; Hopmans and others 1997; Humpf and Voss 2004). Several toxicological studies using swine and rats established reduced toxicity of reaction products of FB1 and reducing sugars compared to the unsubstituted analogue (Howard and others 2002; Fernandez-Surumay and others 2005; Voss and others 2008). It is hypothesized that the reactive amine group imparts toxicity to FB1 since studies have shown that chemically blocking the group reduces toxicity in monkey kidney cells (Meca and

Table 1—Parameters measured during and after twin-screw extrusion in the presence and absence of glucose.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Torque (Nm)</th>
<th>Temperature (°C)</th>
<th>Pressure (psi)</th>
<th>Output (g/min)</th>
<th>Diameter (mm)</th>
<th>Expansion ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-E</td>
<td>97.99 ± 8.67</td>
<td>160.2 ± 4.7</td>
<td>470.10 ± 54.54</td>
<td>98.9 ± 4.9</td>
<td>5.84 ± 0.03</td>
<td>3.77 ± 0.04</td>
</tr>
<tr>
<td>Batch 1-E</td>
<td>143.66 ± 12.6</td>
<td>159.9 ± 4.7</td>
<td>957.06 ± 105.47</td>
<td>94.7 ± 3.0</td>
<td>5.67 ± 0.02</td>
<td>3.82 ± 0.02</td>
</tr>
<tr>
<td>Batch 1-EG</td>
<td>95.39 ± 13.16</td>
<td>161.6 ± 5.4</td>
<td>723.41 ± 73.23</td>
<td>94.9 ± 9.2</td>
<td>5.80 ± 0.01</td>
<td>3.74 ± 0.01</td>
</tr>
<tr>
<td>Batch 2-E</td>
<td>98.84 ± 7.81</td>
<td>159.5 ± 4.5</td>
<td>425.27 ± 50.95</td>
<td>99.5 ± 1.9</td>
<td>5.83 ± 0.01</td>
<td>3.78 ± 0.02</td>
</tr>
<tr>
<td>Batch 2-EG</td>
<td>45.57 ± 8.85</td>
<td>160.9 ± 5.3</td>
<td>300.77 ± 68.14</td>
<td>84.0 ± 4.2</td>
<td>5.75 ± 0.01</td>
<td>3.67 ± 0.01</td>
</tr>
</tbody>
</table>

1Legends for the samples in column—CG-E = clean grits extruded; Batch 1-E = grits contaminated with 10 ppm FB1 extruded; Batch 1-EG = Batch 1 extruded with 10% glucose; Batch 2-E = grits contaminated with 50 ppm FB1 extruded; Batch 2-EG = Batch 2 grits extruded with 10% glucose.
2The expansion ratio was calculated as the ratio of the cross-sectional area of the extruded material to that of the nozzle based on 50 measurements per sample.
3±Data in columns not sharing superscripts are significantly different (P < 0.05).
Chemical Food Safety

T: Toxicology &

(32x25 to 78x129)

Food Safety

To account for differences in the digestion of fumonisins, mass balance analysis revealed that only 37% to 46% of the FB1 species detected in extruded corn grits were detected after extrusion as HFB1. This result is not unexpected since hydrolysis of FB1 to HFB1 is favored at alkaline pH values (Jackson and others 1996). Interestingly, only 20% to 30% of FB1 species in gits with added glucose could be detected in the form of the fumonisin analogues measured in this study.

Conclusions

Our results suggest that the majority of fumonisin B1 in extruded corn-based foods react via the primary amine of the toxin to food components to form a variety of products that have not been identified. Studies using radio-labeled FB1 may enable a better understanding of the fate of fumonisin during extrusion processing. Despite the lack of information on the fate of fumonisins in extruded products, results of one study suggest that extrusion with glucose under some circumstances can reduce in vivo toxicity of FB1. Specifically, Voss and others (2008) found that kidney lesions in rats fed 1 of 3 batches of fumonisin-contaminated corn grits that were (single- or double-) extruded with added glucose were

Table 3—Mass balance of fumonisin B1 species in unextruded and extruded corn grits.*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Unbound FB1</th>
<th>Bound FB1</th>
<th>HFB1</th>
<th>NDF-FB1</th>
<th>Total FB1 species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1</td>
<td>14.5 ± 2.16a</td>
<td>-</td>
<td>3.32 ± 0.34a</td>
<td>1.31 ± 0.02a</td>
<td>1.80 ± 0.10a</td>
</tr>
<tr>
<td>Batch 2</td>
<td>27.8 ± 1.44a</td>
<td>19.9 ± 1.00a</td>
<td>3.72 ± 0.09a</td>
<td>1.30 ± 0.47a</td>
<td>32.7 ± 3.88a</td>
</tr>
<tr>
<td>Batch 2</td>
<td>8.84 ± 0.38a</td>
<td>6.02 ± 0.17a</td>
<td>1.01 ± 0.04a</td>
<td>9.76 ± 0.20a</td>
<td>15.6 ± 2.01a</td>
</tr>
</tbody>
</table>

*All values are concentration (nmol/g dry weight). The average ± standard deviation of 3 determinations. Legends for the samples in column—Batch 2 = grits extruded with 10% glucose; Batch 2-E = Batch 2 grits extruded, Batch 2-EG = Batch 2 grits extruded with 10% glucose. Total FB1 species = unbound fumonisin B1 (FB1) + bound fumonisin B1 (FB1) + hydrolyzed fumonisin B1 (HFB1) + fumonisin B2 (FB2) + fumonisin B3 (FB3) + N-(deoxyn-3-fructos-1-yl) fumonisin B1 (NDF-FB1). ND = not detected, less than the method LOQ. **Samples within a group (batch) not sharing superscripts are significantly different (P < 0.05).

Table 2—Concentration of fumonisin species in unextruded and extruded corn grits determined by LC-fluorescence and LC-MS.*

<table>
<thead>
<tr>
<th>Sample</th>
<th>FB1 (Unbound)</th>
<th>FB1 (Bound)</th>
<th>HFB1 (Unbound)</th>
<th>NDF-FB1 (Unbound)</th>
<th>Total fumonisins</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>0.21 ± 0.08a</td>
<td>-</td>
<td>0.29 ± 0.11a</td>
<td>ND</td>
<td>0.50 ± 0.31a</td>
</tr>
<tr>
<td>Batch 1</td>
<td>10.5 ± 1.57a</td>
<td>10.5 ± 1.57a</td>
<td>5.22 ± 0.87a</td>
<td>1.13 ± 0.14a</td>
<td>17.6 ± 2.47a</td>
</tr>
<tr>
<td>Batch 1-E</td>
<td>3.01 ± 0.10c</td>
<td>2.39 ± 0.25b</td>
<td>0.54 ± 0.03c</td>
<td>0.41 ± 0.08b</td>
<td>4.16 ± 0.22b</td>
</tr>
<tr>
<td>Batch 1-EG</td>
<td>0.64 ± 0.01c</td>
<td>0.78 ± 0.01c</td>
<td>0.30 ± 0.03c</td>
<td>ND</td>
<td>1.01 ± 0.02c</td>
</tr>
<tr>
<td>Batch 2</td>
<td>54.3 ± 1.62a</td>
<td>54.3 ± 1.62a</td>
<td>25.7 ± 1.40c</td>
<td>7.46 ± 1.19c</td>
<td>90.4 ± 3.58c</td>
</tr>
<tr>
<td>Batch 2-E</td>
<td>20.0 ± 2.39a</td>
<td>14.4 ± 0.88b</td>
<td>1.51 ± 0.09c</td>
<td>1.14 ± 0.14c</td>
<td>23.2 ± 1.44c</td>
</tr>
<tr>
<td>Batch 2-EG</td>
<td>6.38 ± 0.26a</td>
<td>4.35 ± 0.12a</td>
<td>0.41 ± 0.02c</td>
<td>2.71 ± 0.08c</td>
<td>8.63 ± 0.17c</td>
</tr>
</tbody>
</table>

*All values are concentration (μg/g dry weight). The average ± standard deviation of 3 determinations. Legends for the samples in column—CG = clean grits (negative control); CG-E = clean grits extruded (extrusion control); Batch 1 = grits contaminated with 10 ppm FB1; Batch 1-E = Batch 1 grits extruded; Batch 1-EG = Batch 1 grits extruded with 10% glucose; Batch 2 = grits contaminated with 50 ppm FB1; Batch 2-E = Batch 2 grits extruded; Batch 2-EG = Batch 2 grits extruded with 10% glucose.

**Total fumonisins = unbound fumonisin B1 (FB1) + bound fumonisin B1 (FB1) + hydrolyzed fumonisin B1 (HFB1) + fumonisin B2 (FB2) + fumonisin B3 (FB3) + N-(deoxyn-3-fructos-1-yl) fumonisin B1 (NDF-FB1). ND = not detected, less than the method LOQ. **Samples within a group (batch) not sharing superscripts are significantly different (P < 0.05).
significantly less severe than those found in rats fed either the unprocessed grits or the grits that were extruded without added glucose. The toxicological properties of the uncooked and extruded corn grits generated in the present study, including prevention of nephrotoxicity by extrusion with glucose supplementation of Batch 1, are reported elsewhere (Voss and others 2011).

Safety

Corn grits contaminated with fumonisin B₁, cultured with *Fusarium verticillioides* M-2552, were handled with proper caution as fumonisin B₁ is an IARC class B2 carcinogen.

Acknowledgment

This study was supported by a grant from the Natl. Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant nr. 2005-35201-16329.

References

