Reproductive and Sphingolipid Metabolic Effects of Fumonisin B₁ and its Alkaline Hydrolysis Product in LM/Bc Mice: Hydrolyzed Fumonisin B₁ Did Not Cause Neural Tube Defects

Kenneth A. Voss,*† Ronald T. Riley,* Maurice E. Snook,* and Janee Gelineau-van Waes‡,2

*Toxicology & Mycotoxin Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia 30604-5677; and ‡Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5455

Received August 7, 2009; accepted September 2, 2009

Fumonisins are mycotoxins produced by Fusarium verticillioides. They are toxic to animals and exert their effects through mechanisms involving disruption of sphingolipid metabolism. Fumonisins are converted to their hydrolyzed analogs by alkaline cooking (nixtamalization). Both fumonisins and hydrolyzed fumonisins are found in nixtamalized foods such as tortillas, and consumption of tortillas has been implicated as a risk factor for neural tube defects (NTD). Fumonisin B₁ (FB₁) induced NTD when given (ip) to pregnant LM/Bc mice; however, neither the NTD induction potential of hydrolyzed fumonisin B₁ (HFB₁) nor its effect on sphingolipid metabolism in pregnant mice have been reported. The teratogenic potential of FB₁ and HFB₁ was therefore compared using the LM/Bc mouse model. Dams were dosed (ip) with 2.5, 5.0, 10, or 20 mg/kg (≤ 49 μmol/kg) body weight (bw) HFB₁ on embryonic day (E)7–E8. Negative and positive control groups were given vehicle or 10 mg/kg (14 μmol/kg) bw FB₁, respectively. The high dose of HFB₁ disrupted sphingolipid metabolism, albeit slightly, but did not cause maternal liver lesions or NTD (n = 8–10 litters per group). In contrast, 10 mg/kg bw FB₁ markedly disrupted maternal sphingolipid metabolism, caused hepatic apoptosis in the dams, increased fetal death rates, and decreased fetal weights. Furthermore, NTD were found in all FB₁-exposed litters (n = 10), and 66 ± 24% of the fetuses were affected. The findings indicate that HFB₁ does not cause NTD in the sensitive LM/Bc mouse model and only weakly disrupts sphingolipid metabolism at doses up to sevenfold higher (micromole per kilogram body weight basis) than the previously reported lowest observed adverse effect level for FB₁.

Key Words: fumonisins; hydrolyzed fumonisin B₁; nixtamalization; reproductive toxicity; sphingolipids.

Mention of a trademark, proprietary name or vendor does not imply its approval by the U.S. Department of Agriculture to the exclusion of others that may be equally suitable.

†To whom correspondence should be addressed at Toxicology & Mycotoxin Research Unit, United States Department of Agriculture, Agricultural Research Service, PO Box 5677, Athens, GA 30604-5677. Fax: (706) 546-3116. E-mail: ken.voss@ars.usda.gov.

‡Present address: Department of Pharmacology, Creighton University, Omaha, NE 68178.
induction potential of HFB1 and FB1 and their ability to disrupt 2007). The objectives of this study were to compare the NTD

other fumonisins are converted under alkaline conditions to their hydrolyzed analogs (Fig. 1). Only a few surveys of

FIG. 1. The chemical structures of FB1 and its full hydrolysis product. Under alkaline conditions, including those found during cooking by nixtamalization, FB1 is converted to HFB1 by hydrolytic cleavage of the carballylic acid (propane 1-2-3 tricarboxylic acid) groups (arrows) attached to the FB1 hydrocarbon “backbone” at the C14 and C15 positions.

FB2 and HFB1. FB1 was provided by Dr Robert Eppley, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD. HFB1 was prepared by hydrolysis of FB1 in 2 N KOH (70°C overnight). After hydrolysis, the HFB1 was cleaned up over a 35 cc C18 SepPak column (Waters, Milford, MA) (Voss et al., 1996) that was eluted in sequence with 30% aqueous acetonitrile, 70% acetonitrile, and acetonitrile. The eluants were assayed by high-performance liquid chromatography (HPLC)-fluorescence detection after precolumn derivatization with ortho-phthalaldehyde (OPA) (Pierce, Rockford, IL) (Burns et al., 2008) to confirm elution of HFB1 only in the 70% fraction. After removal of the solvent from the 70% fraction by rotovaporation and freeze drying, the purity of the HFB1 preparation (a slightly yellow oily material) was assessed by liquid chromatography-tandem electrospray ionization mass spectrometry as described in Zitomer et al. (2008).

Dosing solutions. The high-dose solution (2 mg/ml) was prepared by dissolving the HFB1 preparation in 50 ml hypotonic (0.3%) saline, which also served as the dosing vehicle. HFB1 concentration of the high-dose solution was determined by HPLC as described above (Burns et al., 2008), with quantification by comparison to an external standard of HFB1 (generously provided by M. Busman, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Peoria, IL). The remaining dosing solutions (0.25, 0.5, and 1 mg/ml) were prepared by diluting aliquots of the high-dose solution with vehicle. The dosing solutions were sterile filtered (Milllex-GV 0.22 μm filters; Millipore, Bedford, MA) into autoclaved bottles affixed with rubber caps and stored refrigerated. The dosing solution for the positive control group, 1 mg/ml FB1 (determined gravimetrically), was prepared in the same manner.

Animals. The experimental protocol was approved by Institutional Animal Care and Use Committee, Richard B. Russell Agricultural Research Center, USDA, ARS. Acclimated male and female mice of the inbred LM/Bc strain (Gelineau-van Waes et al., 2005) were individually housed (except during mating) in stainless steel wire-mesh cages kept in an environmentally controlled room with a 12-h light/dark cycle. The animals had free access to feed (2019 Global Diet; Tecklad, Madison, WI) and fresh tap water.

Experimental design. Mating pairs were randomly selected and cohabited in the males’ cages. Females were examined each morning, and the first day in which a vaginal plug was observed was designated embryonic day (E0). On E0, the females were weighed and assigned to one of six groups by stratified randomization. They were observed daily and weighed again on E6, E9, E15, and before necropsy.

The dams were dosed in the mornings of E7 and E8 with 0 (vehicle control), 2.5, 5.0, 10, or 20 mg/kg body weight (bw) HFB1 administered by ip injection at a volume rate of 10 ml/kg bw. The positive control group was treated with 10 mg/kg bw FB1 as described. One half of the females were euthanized (CO2) on E9 and the remainder on E16. At necropsy, the internal organs were examined and the maternal liver and kidneys weighed. Implantation sites were counted on E9, and Gravid uterus were weighed on E16 and their contents examined (see below). Specimens of maternal liver were fixed in 10% neutral-buffered formalin at both E9 and E16. Additional liver samples were frozen (−80°C) for sphingolipid analyses.

Uteri from dams killed on E16 were excised and examined to determine the number of total implantation sites, early resorptions, late fetal deaths, and viable fetuses. Fetuses were excised, examined for NTD, and weighed. The livers and placenta from two fetuses per litter were collected, weighed, and stored frozen (−80°C) for biochemical evaluations.

Histopathology. The livers of five dams killed at E9 and five killed at E16 from the vehicle control, high-dose HFB1 (20 mg/kg bw), and positive control (10 mg/kg bw FB1) groups were processed, stained with hematoxylin and eosin, and microscopically examined.

Sphingolipid analysis. Free sphingoid bases and sphingoid base 1-phosphates were quantified by liquid chromatography-mass spectrometry

Materials and Methods
LC-MS) as described by Zitomer et al. (2009). Complex sphingolipids (CSL) were extracted and acid hydrolyzed as described in Riley et al. (2000) and the sphingoid base backbones quantified by LC-MS (Zitomer et al., 2009).

Free sphinganine (Sa) concentrations in maternal liver were quantified for five dams per group killed on E9. More detailed sphingolipid profiles were determined at E9 and E16 for randomly selected females from the vehicle control, high-dose HFB1, and the positive control groups. The more extensive profiles included the concentrations of free Sa, sphingosine (So), sphingoid base 1-phosphates (Sa 1-P and So 1-P), 1-deoxy sphinganine (1-deoxy Sa) as well as CSL in maternal liver (n = 5 per group), fetal liver (n = 4–5 per group), and placentae (n = 5 per group) from the vehicle control, 20 mg/kg bw HFB1, and 10 mg/kg bw FB1 groups. The concentration of a novel compound tentatively identified as 1-deoxy sphingosine (1-deoxy So) (see “Discussion” section) was also estimated.

Statistics. Statistical analyses were done using Sigma Stat (Systat Software, San Jose, CA). Parametric data were analyzed by one-way ANOVA followed by Duncan’s test to identify differences among groups. Non-parametric data were analyzed using the Kruskal-Wallis rank sum test followed by Tukey’s test or, for sphingolipid profile results, by ANOVA after log10 transformation (Riley and Voss, 2006). Tests were two tailed, and significance was judged at p < 0.05.

RESULTS

HFB1 Preparation

No FB1 was detected in any of the cleanup fractions. HFB1 eluted exclusively in 70% acetonitrile, and the HPLC chromatogram of this fraction did not reveal any other significant OPA-positive peaks (data not shown). LC-MS (total ion chromatogram, scan range = 100–2000 m/z, Fig. 2A) of this fraction revealed a single peak having the same retention time and m/z (406) as standard HFB1. The material exhibited the same mass spectra as the HFB1 standard when evaluated by mass spectrometry/mass spectrometry (Fig. 2B).

Maternal Clinical, Necropsy, and Histopathology

Neither HFB1 nor FB1 had any effect on the general appearance of the animals. No differences in maternal body weight between the vehicle control and other groups were found, although the weight of the dams given 10 mg/kg bw FB1 (35.3 ± 2.6 [SD] g) was 8–12% lower than that of the other groups (38.4 ± 3.9 to 39.9 ± 1.6 g) on E15. Weight gains, E6 through E15, of the groups given HFB1 ranged from 6.7 ± 2.8 (10 mg/kg bw) to 7.9 ± 2.2 g (20 mg/kg bw) and did not differ from the vehicle controls. Weight gain of the positive control group (4.0 ± 2.0 g) during gestation was significantly decreased compared to all groups (7.2 ± 1.1 to 7.9 ± 2.2) except the one given 10 mg/kg bw HFB1 (6.7 ± 2.8).

Except for an increase in relative liver weight of the dams given 10 mg/kg bw FB1 (6.7 ± 0.68% bw compared to 5.7 ± 2.1% bw in the vehicle controls), no differences in absolute or relative organ weights were found at E16. This difference reflected the slightly lower (~8–12% lower than other groups, not significantly different) body weight of the FB1-treated dams.

No liver lesions attributable to HFB1 were found at either E9 or E16. In contrast, 10 mg/kg bw FB1 caused overt hepatic lesions in all dams examined on E9 that were consistent with
the effects of FB1 (Bolger et al., 2001; Gelineau-van Waes et al., 2009; Voss et al., 2007b) and judged to be moderately severe. Specific features included scattered hepatocellular apoptosis, less frequently observed foci of necrosis involving single to a few hepatocytes, increased numbers of mitotic figures, and variability in cell and nucleus size. The hepatic lesions were readily reversible. The only evidence suggestive of FB1 exposure remaining at E16 was a minimal number of isolated small foci of necrotic cells and, subjectively, slightly more mitotic figures than seen in the other groups.

Reproductive Data

No differences in the number of total implants/dam were found at E9 or E16. Counts ranged from 9.0 (5.0 mg/kg bw HFB1) to 12.4 (20 mg/kg bw HFB1) at E9 (data not shown) and from 9.9 (10 mg/kg bw HFB1) to 11.8 (2.5 mg/kg bw HFB1) at E16 (Table 1). No statistically significant differences were found among the vehicle control and FB1-treated groups at E16 for the following (Table 1): early resorptions/litter, late fetal deaths/litter, or live fetuses/litter. HFB1 also had no significant effect on (live) fetal or placental weight. In contrast, 10 mg/kg bw FB1 was fetotoxic (Table 1) as demonstrated by the significant decrease in viable fetuses (group mean = 3.9 compared to 8.6–10.0 in the other groups) and increase in late fetal deaths (group mean = 3.0 compared to 0.3–0.7 in the other groups) found in the positive control litters. The number of early resorptions/positive control litter (mean = 4.6) was also higher than in the other groups (means ranged from 0.5 to 1.7), although a statistical difference from the vehicle control group was not demonstrated. Fetal and placental weights of the positive control group were also significantly decreased: their respective values were 40 and 26% less than those of the vehicle control group (Table 1).

No fetuses with NTD were found in the vehicle control or any HFB1-treated group. At least one NTD-affected fetus was found in all litters from dams treated with 10 mg/kg bw FB1, and in all cases, the anomaly presented as exencephaly. NTD were found not only in apparently viable fetuses but were also recognizable in some of the dead fetuses that had not yet undergone advanced autolysis. As a result, the number of NTD/positive control litter (mean = 4.7) was higher than that of viable fetuses/litter (mean = 3.9).

Tissue Sphingolipids

Multiple changes in the tissue sphingolipid profiles were found in the high-dose (20 mg/kg bw) HFB1 group and, to a significantly greater extent, in the positive control (10 mg/kg bw) FB1-treated group. Most effects were reversible, that is, with a few exceptions, the differences between the HFB1- or FB1-treated and vehicle control groups were more pronounced 1 day after the last dose (E9) than a week later (E16).

Dams

A dose-dependent increase in Sa (picomole per gram) of maternal liver was found in the HFB1-treated groups on E9 (Fig. 3), and as a result, Sa in the high-dose group was significantly greater than in the vehicle control group. Liver Sa of dams treated with FB1 (10 mg/kg bw) was markedly (Table 2) elevated and significantly increased compared to all other groups, including the high-dose HFB1 group. Concentrations of 1-deoxy Sa were slightly higher (1.9-fold) in the high-dose HFB1 group than in the vehicle controls on E9 and markedly increased in the FB1-treated dams at that time. Concentrations of both Sa and 1-deoxy Sa in the high-dose HFB1-treated and FB1-treated groups decreased sharply after...
and, with the exception of 1-deoxy Sa in positive control dams, no significant differences were found at E16 (Table 2). Concentrations of Sa 1-P were increased (63-fold relative to the vehicle controls) on E9 only in the FB1-treated positive controls (Table 2). Thereafter, Sa 1-P concentrations in this group decreased so that the difference (significant at \(p < 0.05 \)) between this group and the vehicle controls was 2.7-fold by E16. Sa 1-P was also significantly elevated (about threefold) in the high-dose HFB1-treated group but only at E16.

On E9, So concentration was slightly elevated in both the high-dose HFB1-treated and the FB1-treated groups, although statistical significance was demonstrated only for the latter. No differences in So concentration were found at E16 and no differences in So 1-P levels were found at either time. Concentrations of the putative 1-deoxy So were significantly elevated at E9 in the high-dose HFB1-treated group and to a significantly greater extent in the positive control group. Amounts in the vehicle control group at E9 and E16, as well as in the high-dose HFB1 and positive control groups at E16, were negligible.

The treatments also affected maternal CSL, although the pattern of response found in the HFB1- and FB1-exposed groups differed (Table 3). FB1 treatment significantly decreased all four classes of CSL examined at E9. Like other sphingolipid changes, the effect was reversible: no significant differences were found between the vehicle and positive control groups on E16. In contrast, in dams treated with 20 mg/kg bw HFB1, CSL incorporating So or 1-deoxy Sa were not decreased and CSL incorporating Sa as well as those incorporating 1-deoxy So were significantly increased on E9. Concentrations of the latter two CSL classes decreased after E9 so that there were no significant differences at E16.

Placentae

Placentae were only collected for analysis on E16. While no differences between the 20 mg/kg bw HFB1-treated and the vehicle control groups were found (data not shown), there were several differences between the positive control and the other two groups. These included the following: increased Sa (9.2 ± 2.3 nmol/g compared to a range of 6.0 ± 1.1 to 6.2 ± 1.0 nmol/g in the other groups), increased 1-deoxy Sa (9.0 ± 2.9 nmol/g compared to 1.4 ± 0.2 to 2.5 ± 1.9 nmol/g in the other groups), and increased 1-deoxy So (8.7 ± 5.1 nmol/g compared to

TABLE 2
Liver Concentrations of Selected Sphingoid Bases and Their Metabolites in Pregnant LM/Bc Mice 1 Day (E9) and 8 Days (E16) after Treatment with 0 (Vehicle Control Group) or 20 mg/kg bw HFB1 or 10 mg/kg bw FB1 (Positive Control Group) on E7 and E8

<table>
<thead>
<tr>
<th>Day and treatment</th>
<th>Free sphingoid bases and metabolites (pmol/g)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sa</td>
</tr>
<tr>
<td>E9</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>1330<sup>d</sup> (210)</td>
</tr>
<tr>
<td>HFB<sub>1</sub> 20 mg/kg bw</td>
<td>2501<sup>e</sup> (683)</td>
</tr>
<tr>
<td>FB<sub>1</sub> 10 mg/kg bw</td>
<td>73,388<sup>c</sup> (16811)</td>
</tr>
<tr>
<td>E16</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>1843 (181)</td>
</tr>
<tr>
<td>HFB<sub>1</sub> 20 mg/kg bw</td>
<td>1482 (197)</td>
</tr>
<tr>
<td>FB<sub>1</sub> 10 mg/kg bw</td>
<td>3487 (1116)</td>
</tr>
</tbody>
</table>

Note. 1-Deoxy-Sa, 1-deoxysphinganine; 1-Deoxy So, 1-deoxy sphingosine (putative); ND, not detected; Sa 1-P, sphinganine 1-phosphate; So 1-P, sphingosine 1-phosphate.

Values in columns at each time (E9 or E16) not sharing superscript (d,e,f) are significantly different, \(p < 0.05 \).

^aThe first day in which mating was confirmed by the presence of a vaginal plug is defined as E0.

^bValues are the group mean; the SD is given in parentheses, \(n = 4–5 \) per group.

^cValues are the group mean; error bars denote SD; \(n = 5 \) per group.

^dDue to unavailability of a standard, provisional identification of this compound as 1-deoxy So is based on mass spectral properties and tissue concentration data (see text).
Liver Concentrations of Selected Complex Sphingolipids in Pregnant LM/Bc Mice 1 Day (E9) and 8 Days (E16) after Treatment with 0 (Vehicle Control Group) or 20 mg/kg bw HFB1 or 10 mg/kg bw FB1 (Positive Control Group) on E7 and E8

<table>
<thead>
<tr>
<th>Day and treatment</th>
<th>CSL-Sa</th>
<th>CSL-1-deoxy Sa</th>
<th>CSL-So</th>
<th>CSL-1-deoxy So</th>
</tr>
</thead>
<tbody>
<tr>
<td>E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>4974(^d) (665)</td>
<td>999(^e) (262)</td>
<td>115,665(^e) (21,361)</td>
<td>216(^f) (37)</td>
</tr>
<tr>
<td>HFB1 20 mg/kg bw</td>
<td>7744(^d) (558)</td>
<td>1209(^e) (140)</td>
<td>135,692(^e) (24,336)</td>
<td>330(^f) (49)</td>
</tr>
<tr>
<td>FB1 10 mg/kg bw</td>
<td>555(^d) (776)</td>
<td>149(^e) (221)</td>
<td>20,136(^d) (8184)</td>
<td>39(^f) (59)</td>
</tr>
<tr>
<td>E16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>3985 (783)</td>
<td>1071 (344)</td>
<td>137,003 (28,071)</td>
<td>165(^e) (37)</td>
</tr>
<tr>
<td>HFB1 20 mg/kg bw</td>
<td>3830 (246)</td>
<td>1030 (465)</td>
<td>132,380 (34,397)</td>
<td>136(^e) (39)</td>
</tr>
<tr>
<td>FB1 10 mg/kg bw</td>
<td>4966 (706)</td>
<td>1200 (516)</td>
<td>157,136 (50,528)</td>
<td>235(^e) (57)</td>
</tr>
</tbody>
</table>

Note. CSL-1-deoxy Sa, complex sphingolipids incorporating 1-deoxy sphinganine; CSL-1-deoxy So, complex sphingolipids incorporating (putative) 1-deoxy sphingosine; CSL-Sa, complex sphingolipids incorporating sphinganine; CSL-So, complex sphingolipids incorporating sphingosine; ND, not detected.

Values in columns at each time (E9 or E16) not sharing superscript (d,e,f) are significantly different, \(p < 0.05 \).

\(^a\)The first day in which mating was confirmed by the presence of a vaginal plug is defined as E0.

\(^b\)Values are the group mean; the SD is given in parentheses, \(n = 4–5 \) per group.

\(^c\)Due to unavailability of a standard, provisional identification of the sphingoid base 1-deoxy So is based on mass spectral properties and tissue concentrations of Sa.

1.3 ± 0.4 to 2.7 ± 1.7 nmol/g in the other groups). The 1-phosphate metabolites of Sa and So were both decreased in the placenta of dams given 10 mg/kg FB1; the respective results for Sa 1-P and So 1-P were 64 ± 13 and 238 ± 61 pmol/g. Sa 1-P averaged 108 ± 19 to 121 ± 42 and So 1-P averaged 304 ± 58 to 352 ± 69 pmol/g in the vehicle control and HFB1-treated groups, respectively. No statistically significant differences in placental CSL were found. However, CSL incorporating Sa or So in the 20 mg/kg bw HFB1 and 10 mg/kg bw FB1 groups averaged 20–30% less than their corresponding vehicle control values. Conversely, CSL incorporating the compound tentatively identified as 1-deoxy So averaged 27 and 65% higher in the groups treated with 20 mg/kg bw HFB1 or 10 mg/kg bw FB1, respectively. A similar pattern was apparent for CSL incorporating Sa.

Fetal Liver

There was a slight increase in 1-deoxy Sa and a slight decrease in So 1-P in fetal livers of the positive control group at E16 (data not shown). No other significant differences in free sphingoid base or complex sphingolipid concentrations were found.

DISCUSSION

The etiology of NTD is complex and involves genetic, environmental, and nutritional components (Gelineau-van Waes et al., 2009; Green and Copp, 2005). Epidemiological (Missmer et al., 2006) and experimental (Gelineau-van Waes et al., 2005, 2009) evidence suggest that fumonisins are a potential NTD risk factor in populations dependent upon maize as a diet staple. Consumption of tortillas, especially homemade tortillas likely containing fumonisins, during the first trimester of pregnancy was identified as an NTD risk factor (Missmer et al., 2006).

Tortillas are made from masa produced by the alkaline cooking process known as nixtalamization. The process differs somewhat among households and commercial operations so that, depending on cooking conditions, recipe, and quality of the maize, the amount of fumonisins remaining in the masa is variable (De La Campa et al., 2004). Surveys for hydrolyzed fumonisins in nixtamalized products are limited but suggest that, while concentrations are generally low, their contribution to total fumonisin content can be significant. HFB1 constituted 25% (micromolar basis) of the FB1 analogs in masa, made from low-quality maize (Voss et al., 2001). Equimolar amounts of HFB1 and FB1 were found in tortillas made using the process as practiced in Guatemalan households (Palencia et al., 2003) and the micromolar ratio of HFB1:FB1 in a survey of nixtamalized products from Sonora, Mexico, averaged from 0.37 to 0.62 (Cortez-Rocha et al., 2005). HFB1:FB1 ratios in alkaline-cooked snacks from the German market ranged from 0.2 to 3.7 (Seefelder et al., 2001). Dvorak et al. (2008) found HFB1 in 22 of 38 tortilla samples and micromolar ratios of HFB1:FB1 ≥ 0.5 were found in 22% of the positive samples. Ratios from 0.94 to 1.48 were found in masa, tortillas, and tortilla chips prepared in the laboratory from contaminated corn (Dombrink-Kurtzman et al., 2000). Together, these surveys indicate that pregnant women, especially those consuming large amounts of alkaline-cooked maize, are exposed at least on occasion to HFB1.

The LM/Bc mouse was selected as the test strain because, using the ip dosing protocol of Gelineau-van Waes et al. (2005, 2009), it is the most sensitive animal model for NTD induction...
by FB$_1$. While the no observed adverse effect level in this model has not been rigorously established, the experiments of Gelineau-van Waes et al. (2005) suggest that it is below 5 mg/kg bw. At the latter dose, they found that 40% of the litters (at least one fetus with NTD found in the litter) and 5% of the total fetuses were NTD positive. Both variables increased in a dose-related manner so that 100% of the litters were affected at \geq 15 mg/kg bw and the maximum incidence of affected fetuses, about 80%, was found at the highest dose tested, 20 mg/kg bw FB$_1$. In this experiment, HFB$_1$ was clearly less potent than FB$_1$ as it did not elicit NTD when given at 20 mg/kg bw, a dose that equals 49 μmol/kg bw. This is 3.5-fold higher than the positive control dose of FB$_1$ (10 mg/kg bw = 14 μmol/kg bw) and sevenfold higher than 5 mg/kg bw FB$_1$ (7 μmol/kg bw), the lowest dose tested by Gelineau-van Waes et al. (2005).

A lowest adverse affect level for HFB$_1$-induced fetotoxicity was not established and some data suggest that overt fetotoxicity would appear at higher doses. First, late deaths were twice as frequent in high dose as in the vehicle control litters. The number of live fetuses/litter at 10 or 20 mg/kg bw tended to be lower than in the other HFB$_1$-treated and vehicle control groups. While not significantly different from those groups, the late fetal death rate in the high-dose group was also not significantly different from the positive control group. Accordingly, the postimplantation death index of the high-dose group was twice that of the vehicle controls and was not significantly different from the positive control group.

FB$_1$ was moderately hepatotoxic to the dams at E9. As previously observed in rats (Voss et al., 1998), hepatotoxicity was reversible as 1 week later, at E16, only a few isolated apoptotic, necrotic, or mitotic cells were present. HFB$_1$ was in contrast not hepatotoxic as judged by morphological criteria, a finding that is in agreement with Howard et al. (2002), who found microscopic lesions in female mice fed \geq 50 ppm FB$_1$ for 4 weeks, but not in groups fed micromolar equivalents of HFB$_1$. Similarly, oral doses of 120 mg/kg bw HFB$_1$ were not toxic to pregnant rats (Collins et al., 2006), whereas in a separate study, \geq 25 mg/kg FB$_1$ bw caused significant nephrotoxicity and heptotoxicity (Collins et al., 1998).

Fumonisins disrupt sphingolipid metabolism by inhibiting ceramide synthases, enzymes catalyzing the de novo synthesis of ceramide from fatty acids and sphingoid bases (Riley et al., 2001; Zitomer et al., 2009). The ensuing disruption of sphingolipid-dependent signaling and physiological processes is the key event mediating fumonisins’s diverse biological effects (Bolger et al., 2001; Gelineau-van Waes et al., 2009; Riley et al., 2001; Voss et al., 2007b), which include inhibition of folate utilization (see below) (Gelineau-van Waes et al., 2005; Sadler et al., 2002; Stevens and Tang, 1997). HFB$_1$ disrupts ceramide synthase in vitro 3–10 times less potently than FB$_1$ (Norred et al., 1997; Seefelder et al., 2002). Nixtamalized Fusarium culture materials increased kidney and liver Sa and So concentrations when fed to rats (Burns et al., 2008; Voss et al., 1998), although the possibility remains that these effects were mediated by residual or “hidden” FB$_1$ (matrix-bound forms not detected by HPLC) (Kim et al., 2003; Park et al., 2004) remaining in the nixtamalized preparations rather than HFB$_1$. In this regard, it is noteworthy that liver Sa of female mice fed diets amended with 143 μmol/kg HFB$_1$ (150 ppm FB$_1$ equivalents) was unaffected (Howard et al., 2002).

The results of this experiment are to our knowledge the first unequivocal demonstration of sphingolipid metabolism disruption in vivo by HFB$_1$. HFB$_1$ is acylated by ceramide synthase in vitro and by rats in vivo (Seiferlein et al., 2007). The N-acylated metabolites are structural analogs of ceramide, inhibited ceramide synthase, and were more potent cytotoxins than HFB$_1$ when tested in HT29 human colorectal (Seiferlein et al., 2007) or other mammalian cell lines (Abou-Karam et al., 2004). Studies are needed to determine if the metabolic effects in the HFB$_1$-treated mice were mediated directly by HFB$_1$, indirectly by N-acyl metabolites, or both. Regardless, HFB$_1$ was a significantly less potent modulator of sphingolipid metabolism than FB$_1$.

The identity of a novel metabolite previously observed to accumulate in cells exposed to FB$_1$ has been recently identified as the novel sphingoid base, 1-deoxy Sa that, like Sa, was cytotoxic to LLC-PK$_1$ and DU-145 cells (Zitomer et al., 2009). The increase, albeit transient, of 1-deoxy Sa in liver of the dams dosed with 10 mg/kg bw FB$_1$ or 20 mg/kg bw HFB$_1$ in this study independently confirms that it accumulates in the liver of fumonisin-exposed mice as reported by Zitomer et al. (2009). Liver concentration of another compound tentatively identified as 1-deoxy So was also transiently elevated by both fumonisins. Structural confirmation was not possible as a standard is currently unavailable. Identification as 1-deoxy So was inferred from the mass ion (m/z = 284.2) and the similarity of the compound’s mass spectra to that of 1-deoxy Sa. The concurrent elevation of putative 1-deoxy So and depletion of its CSL by FB$_1$ inhibition of ceramide synthase is further evidence that the compound is a sphingoid base. Structural confirmation and in vivo toxicological significance of the putative 1-deoxy So remains to be determined.

There is evidence both against and for fumonisins being NTD risk factors. FB$_1$ was not teratogenic to rabbits (LaBorde et al., 1997), rats (Collins et al., 1998), or CD1 mice (Reddy et al., 1996) when given orally at maternally toxic doses. However, folate deficiency increases NTD risk (Green and Copp, 2005; reviewed by Gelineau-van Waes et al., 2009; Missmer et al., 2006) and FB$_1$ inhibited 5-tetramethylfolate uptake by CaCo2 cells through a mechanism involving complex sphingolipid depletion (Stevens and Tang, 1997). Accordingly, folate supplementation partially protected cultured mouse embryos from NTD induction by FB$_1$ (Sadler et al., 2002), while both folate and, more effectively, the complex sphingolipid GM$_1$ protected LM/Bc mouse embryos in utero (Gelineau-van Waes et al., 2005). Our results are in conformity with the latter findings insofar as CSL were
depleted only on E9 and only by the treatment (20 mg/kg bw FB$_1$) eliciting NTD. It can be supposed that a threshold for NTD induction by fumonisins, perhaps including hydrolyzed fumonisins, would be lower in animals that have a preexisting vulnerability because of nutritional deficiencies, environmental conditions, or genetic predisposition (Gelineau-van Waes et al., 2009). Other consequences of ceramide synthase inhibition potentially contributing to NTD induction should also be considered. These include imbalances in pro-apoptotic (Sa) and “pro-survival” (So 1-phosphate) metabolites, inappropriate intercellular or intracellular signal transduction by So (or Sa) 1-phosphates or cytokines, as well as nonspecific events such as oxidative damage (Bolger et al., 2001; Gelineau-van Waes et al., 2009).

In summary, HFB$_1$ did not induce NTD when tested using the sensitive LM/Bc mouse model at 20 mg/kg bw, a dose which disrupted sphingolipid metabolism, albeit slightly. At the lesser dose level of 10 mg/kg bw, FB$_1$ markedly disrupted sphingolipid metabolism, caused moderate apoptotic liver lesions, and induced NTD. The results provide further evidence that hydrolyzed fumonisins are less toxic in vivo than their corresponding parent fumonisins and, specifically, that they are not a significant risk factor for NTD.

FUNDING

United States Department of Agriculture, Agricultural Research Service (Research Project No. 6612-42000-038-00D).

ACKNOWLEDGMENTS

The authors thank J. Showker, E. Wray, and especially N. Stewart for their dedication and expert technical assistance. The contributions and consultations of R. Eppley, R. Plattner, M. Busman, N. Zitomer, T. Mitchell, and T. Burns are gratefully acknowledged.

REFERENCES

