Total Fumonisins Are Reduced in Tortillas Using the Traditional Nixtamalization Method of Mayan Communities

(Manuscript received 11 June 2003. Initial review completed 18 June 2003. Revision accepted 5 July 2003.)

Edwin Palencia, Olga Torres, Winston Hagler,* Filmore I. Meredith,† Lonnie D. Williams§ and Ronald T. Riley†³

Instituto de Nutricion de Centro America Y Panama (INCAP), Calzada Roosevelt, Zone 11, 09001 Guatemala; *Department of Poultry Science, North Carolina State University, Raleigh, NC 27695; and †Toxicology and Mycotoxin Research Unit, R. B. Russell Agricultural Research Center U.S. Department of Agriculture/ARS, Athens, GA 30604

ABSTRACT Fumonisin B₁ (FB₁) is a maize mycotoxin. In tortilla preparation, maize is treated with lime (nixtamalization), producing hydrolyzed FB₁ (HFB₁) due to loss of the tricarballylic acid side chains. This study determined the following: 1) whether nixtamalization by Mayan communities reduces total fumonisins, and 2) the steps in the process at which reduction occurs. Tortillas prepared by the traditional process contained FB₁, FB₂ and FB₃ and their hydrolyzed counterparts. There were equimolar amounts of FB₁ and HFB₁ in the tortillas, but the total fumonisins were reduced 50%. The total FB₁ plus HFB₁ in the residual lime water and water washes of the nixtamal accounted for 50% of the total FB₁ in the uncooked maize. HFB₁ and FB₁ were present in a 1:1 mol/L ratio in the water washes of the nixtamal, the masa dough and the cooked tortillas, whereas the ratio of HFB₁/FB₁ in lime water after steeping was 21. Water washes contained 11% of the FB₁ that was in the uncooked maize. The results show that the traditional method reduced the total fumonisins in tortillas and reduced the sphinganine elevation (a biomarker closely correlated with fumonisin toxicity) in cells treated with extracts of tortillas compared with cells treated with extracts of contaminated maize. J. Nutr. 133: 3200–3203, 2003.

KEY WORDS: • fumonisin B₁ • hydrolyzed fumonisin B₁ • maize • nixtamalization • tortillas

Fumonisin B₁ (FB₁)⁴ is a fungal contaminant of maize worldwide and is responsible for diseases of farm animals (1). It is a liver and kidney carcinogen in rodents and was recently evaluated to be possibly carcinogenic for humans (2). Fumonisins are not DNA reactive, and renal or liver damage is a prerequisite for carcinogenicity (3). Fumonisins (including FB₁, FB₂, and FB₃) are inhibitors of ceramide synthase, a key enzyme in the de novo sphingolipid biosynthesis pathway (1). Their toxicity and carcinogenicity are closely correlated with disruption of sphingolipid metabolism (3). Because toxicity is a prerequisite for carcinogenicity, a no observable effect level (NOEL) has been determined for both toxicity and carcinogenicity. A provisional maximum tolerable daily intake (PMTDI) of 2 μg/(kg body·d) for fumonisins B₁, B₂, and B₃, alone or in combination has been proposed (3). The PMTDI was calculated on the basis of a safety factor of 100 and a NOEL of 0.2 mg/(kg body·d) for the critical target (rat kidney). Processing methods that reduce the amount of fumonisins in food will reduce fumonisin intake, thereby protecting consumers from the possible adverse effects associated with exceeding the PMTDI.

In the preparation of tortillas, maize is treated with lime, which when heated hydrolyzes the tricarballylic acid side chains, reducing a portion of the FB₁ to the aminopentol backbone (HFB₁) (1). Alkali processing to prepare tortillas is practiced throughout the Americas including Guatemala, other parts of Central America, and Mexico. The process is known as nixtamalization (4). A similar process is used commercially in the United States (5), which has a growing population of immigrants from Mexico and Central and South America. Thus, understanding the comparative safety of nixtamalized products using traditional and commercial processes is of importance to consumers in the United States and elsewhere.

Nixtamalized maize products provide the majority of the daily energy for a large proportion of the population in the Central Highlands of Guatemala. A recent survey conducted in the Central Highlands (unpublished data) found that 100% of the population surveyed consumed maize as tortillas and that the mean daily consumption was 14 tortillas. The consumption of maize derived from products other than tortillas was ~145 g. Bressani (4) reported that the daily per capita maize consumption in Guatemala was 318 g. Because of the large amount of maize products consumed by communities in the Central Highlands of Guatemala, even relatively low levels of fumonisins in maize could pose a health risk. For example, at 1 μg total fumonisins/g of maize product, a 60-kg person consuming 318 g would exceed the PMTDI by a factor of 2.65. Several studies have shown that nixtamalization,
when conducted in laboratory or full-scale commercial settings, reduced the total fumonisin content of maize (6,7).

The purpose of this study was as follows: 1) to determine whether the traditional method of nixtamalization as practiced by rural Kaqchikel-speaking Mayan communities in the Central Highlands of Guatemala reduced the level of fumonisins in tortillas produced from fumonisin-contaminated maize, and 2) to determine the steps in the traditional process at which reduction in fumonisin levels were most likely to occur.

MATERIALS AND METHODS

Maize for preparing tortillas. Maize contaminated with fumonisins was obtained from North Carolina in 1999. The maize was shelled and segregated so that it contained predominately intact kernels and shipped to the INCAP where it was used to prepare tortillas using the traditional process of the rural Kaqchikel-speaking Mayan communities.

Preparation of tortillas. Maize was mixed and divided into three equal lots. Approximately 400 g from each lot was placed in steel pots, and samples were removed and stored frozen for analysis by HPLC for FB1 and HFB1, and by LC-MS for FB2, FB3, and HFB2. Coarsely ground lime (CaO, 82 g) was added to 1 L of water; 0.2 L of this stock lime solution was added to each pot followed by an additional 1.1 L of water. The lime water/maize preparation was boiled for ~1.75 h; as water evaporated, fresh water was added. The mixture was allowed to cool and steep for 15 h. The steep water was collected from the lime water/maize preparation then autoclaved at 121°C for 10 min three times with 1.1 L of water. The nixtamal was ground into masa. The volume of the steep water and the rinse water and the wet weight of the nixtamal and masa dough were recorded for each lot. Samples were removed and stored frozen for HPLC analysis. Tortillas were shaped by hand. The mean weight of an uncooked and cooked tortilla was 42 and 16 g, respectively. The tortillas were cooked on a comal (a dish made with clay) over a wood fire. Cooking temperatures varied from 170°C on the outer edge to 212°C at the center of the plate (4). Tortillas were typically 0.5–1 cm thick and ~10 cm in diameter. The time of cooking tortillas was ~3.5 min. A total of 10 tortillas were prepared from each lot. After drying at 38°C, the tortillas were weighed and stored frozen for later HPLC analysis. Tortillas were prepared from each lot. After drying at 38°C, the tortillas were weighed and stored frozen for later HPLC analysis of FB1 and HFB1, and for LC-MS analysis of FB2, FB3, and HFB2.

Analysis for FB1 and HFB1. After drying, 2–3 g of each tortilla (10 lots) and samples of the uncooked maize (1/lot) were extracted with 25 mL of acetonitrile/water (1:1; pH adjusted to 4.5) as described previously (7). For uncooked maize and cooked tortillas, a second acetonitrile/water extraction was done and samples from both extractions were derivatized using ortho-phthalaldehyde (OPA) (Pierce, Rockford, IL) according to previously described methods (8,9) and analyzed by HPLC with fluorescence detection (8,9). Alkaline steep water and water rinses were centrifuged (500 x g for 10 min) to remove solids and then acetonitrile/water 1:1 (600 µL) and OPA-derivatizing reagent (500 µL) were added directly to 50 µL of the clear liquid sample (pH 4.5) and analyzed by HPLC for FB1 and HFB1. LC-MS analysis was similar to that described previously (7) and was used to confirm the presence of other fumonisins. The analytical standard of FB1 was prepared using the method of Meredith et al. (9), and the purity (>96%) was determined by the procedure of Plattner and Brunham (10). The HFB1 was prepared by the method of Poling and Plattner (11), and MS data were used to verify the purity of FB1 and HFB1 standards (9). Standards for FB1 and HFB1 were provided by Ronald Plattner (USDA, Peoria, IL). Results of the HPLC analysis for FB1 and HFB1 are presented in nmol/g so that the amount of HFB1 recovered in each fraction could be compared with the amount of FB1 in the contaminated maize used to prepare the tortillas.

Bioassay method. To determine the ability of fumonisins in tortillas and maize to disrupt sphingolipid metabolism (a biomarker for fumonisin exposure and toxicity), a porcine renal epithelial cell line (LLC-PK1) was used (12,13). The test agents were acetonitrile/water extracts of the fumonisin-contaminated maize used to prepare the tortillas and extracts of the tortillas prepared from the fumonisin-contaminated maize. Clean maize (<0.4 µg FB1/g) and commercial masa flour (<1 µg FB1/g) were used for comparison purposes. Because maize extracts from samples even of the highest quality are toxic to cells in culture, preliminary experiments were conducted to determine the dilution and dosing duration that would avoid the acutely toxic effects of concentrated maize extracts on cultured cells. Residues from 1:1 acetonitrile/water (pH 4.5) extracts (25 mL) of 1.5 g of clean or contaminated maize dissolved in 30 mL of growth medium had no effect on ATP-dependent dome formation or tight junction integrity after 6 h of exposure based on visual observation using phase contrast light microscopy. Therefore, 5-g samples of each test agent were extracted and the dried residue was dissolved in complete growth medium (12,13) and diluted to 30% in complete growth medium. Cells were exposed for 6 h and then harvested, extracted as described previously (13) and analyzed for free sphingoid bases (12), a biomarker for ceramide synthase inhibition and fumonisin toxicity (1).

Statistical analysis. Statistical analysis was done using Sigma Stat software (Jandel Scientific, San Rafael, CA). One-way ANOVA was used followed by tests for post-hoc multiple comparisons using Duncan’s multiple range test. All data were expressed as mean ± s.e., and differences among means were considered significant if P ≤ 0.05.

RESULTS

The FB1 concentration in the uncooked maize after two successive acetonitrile/water (1:1) extractions was 38.1 ± 7.4 µgFB1/g (52.8 ± 7.4 nmol/g) of uncooked maize (n = 6). The FB1 found in the second extraction of uncooked maize comprised 27 ± 7% of the total (n = 6). In tortillas, FB1 and HFB1 found in the second extraction comprised 24 ± 7 and 23 ± 9%, respectively (n = 29). The relative amounts of FB1 and HFB1 on a molar basis in the cooked tortillas were approximately equal (Fig. 1A). This was also the case in the uncooked masa dough in which the ratio of FB1 to HFB1, was 1.04 ± 0.39 (n = 3). On the basis of the LC-MS analysis, the ratio of the areas under the peaks for FB1:HFB1 was 1.0 ± 0.3 (n = 29) in the uncooked maize and the ratio under the peaks of FB1, FB2, HFB1, HFB2, (Fig. 1B) and HFB1, HFB2 and HFB3 (Fig. 1C) in the cooked tortillas did not differ.

The total fumonisins (nmol FB1 plus nmol HFB1) in the cooked tortillas accounted for approximately half (46.2 ± 7%, n = 3) of the FB1 that was in the uncooked maize. The total FB1 in the lime water and water washes accounted for the other half (47.6% ± 11%, n = 3) of the total FB1 originally present in the uncooked maize, and the three fractions (tortillas, lime water and washes) together accounted for 94 ± 18% (n = 3) of the FB1 that was in the uncooked maize. A total of 11% of the FB1 in the uncooked maize was accounted for in the combined water washes (Fig. 2A), however, the first two washes accounted for >90% of the total removed by rinsing (Fig. 2A). Although HFB1 and FB2 were present in approximately equimolar amounts in the uncooked masa dough, cooked tortillas and water washes of the cooked maize, the amount of HFB1 in lime water after steeping was much greater than that of FB1 (Fig. 2B).

Both the extracts of the FB1 contaminated maize and the tortillas prepared from the contaminated maize caused significant elevation in sphinganine in LLC-PK1 cells compared with the extracts of clean maize and commercial masa flour (Fig. 3). The elevation in sphinganine and the sphinganine to sphingosine ratio (Fig. 3 inset) caused by extracts of the cooked tortillas was reduced ~60% relative to that caused by the contaminated maize.

DISCUSSION

The nixtamalization process, regardless of the scale, appears to similarly reduce total fumonisins in the final product. Using...
FIGURE 1 The total (A) and relative (B, C) amounts of fumonisin B₁ (FB₁; black bars) and hydrolyzed fumonisin B₁ (HFB₁; gray bars) in cooked tortillas expressed as nmol FB₁, and normalized to the calculated grams of uncooked maize required to prepare 1 g of tortilla. Values are means ± SD of 10 tortillas prepared from each lot of maize. FB₁, or HFB₁ means without a common letter are different, P ≤ 0.05. (B, C) Examples of the relative amounts of fumonisins in acetonitrile/water (1:1) extracts of cooked tortillas based on single ion monitoring LC-MS analysis. The y-axis values are the percentages of the total ion current normalized to the highest peak.

FIGURE 2 The total amount (A) and molar ratio (B) of fumonisin B₁ (FB₁) and hydrolyzed fumonisin B₁ (HFB₁) in each wash of the nixtamalized maize (A) and also in the lime water (B). Values are means ± SD in three successive washes (first, second, third) of the nixtamal. The values are normalized to the calculated grams of uncooked maize required to prepare the measured grams of nixtamal. Means without a common letter differ, P ≤ 0.05, n = 3. For the comparison of “lime water” to the “first wash,” P = 0.0534.

Regardless of the scale of the process, the initial cooking and steeping of maize under alkaline conditions is the most important step for converting FB₁ to HFB₁ and in reducing the total fumonisins in the cooked tortillas. In the commercial process, the cooking/steeping liquid was found to contain predominantly HFB₁ (7). Based on the data in Voss et al. (7), the ratio of HFB₁ to FB₁ in the cooking/steeping liquid was 45.5; in the pilot-scale study (6), the ratio was ≥20.2. These results are very similar to what was found with the process used by the Mayan communities in which there was ~21 times more HFB₁ than FB₁ in the lime water after cooking and steeping overnight (Fig. 2B).

In the study of Meredith et al. (8), the tortillas from two Guatemalan Central Highland communities (Santa Maria de Jesus and Patzicia) contained high levels (>10 μg/g) of total fumonisins. The actual maize used to prepare the tortillas was not available for analysis; however, based on the results of the present study, the levels of FB₁ in the unprocessed maize would have had to be >20 μg (total fumonisins)/g maize to have ≥10 μg/g in the cooked tortillas. Levels of FB₁ of 20 μg/g in maize are uncommon in commercial maize (3); thus the fact that 66% of the tortillas from Santa Maria de Jesus contained ≥10 μg/g total fumonisins indicates that the quality of the maize used to prepare tortillas is at times exceedingly poor.

There are two results from the 1999 report (8) that cannot be explained easily in light of the findings of the present study. First, the tortillas from the 1999 study (8) contained predominantly HFB₁, whereas in the present study, the levels of HFB₁ and FB₁ (on a molar basis) in tortillas are approximately equivalent (Fig. 1). Second, the nixtamal in the earlier study (8) contained predominantly FB₁, whereas in the present study, the ratio of HFB₁ to FB₁ (on a molar basis) in the masa (1.04 ± 0.39) was similar to the ratio in the tortillas after cooking. It was suggested by Meredith et al. (8) that perhaps the conversion of FB₁ to HFB₁ occurred during cooking of the tortillas, but this contention is not supported by the results of the present study or other studies (6,7) where it is the boiling of the maize in lime water that appears to be responsible for the conversion of FB₁ to HFB₁. The only plausible explanations for the findings in the earlier study of Meredith et al. (8) are that the tortilla samples were mishandled before analysis (i.e., microbial decomposition during shipment or storage) or...
that the process of nixtamalization as practiced in Mayan communities can be highly variable, leading to highly variable results. Of the 50 household samples collected in 1995 (8), only frozen samples were analyzed. Thus, microbial activity during shipping or storage contributing to the high levels of HFB1 is unlikely. In 1995, Santa Maria de Jesus experienced a water shortage that resulted in water rationing (8). If the amount of water used for alkali treatment (boiling and steeping) had been reduced and washing steps omitted, then much higher levels of HFB1 might be expected in the cooked tortillas.

Regardless of the reason for the high levels of HFB1 in tortillas in the earlier study, the results of the present study show clearly that the process of nixtamalization as practiced by Mayan communities under optimal conditions (adequate water) can effectively reduce the level of total fumonisins in cooked tortillas to a degree similar to that seen in studies using commercial or pilot-scale processes. In addition, the biological activity of the acetonitrile/water extract of the cooked tortillas was reduced relative to extracts of the uncooked maize based on the elevation in sphinganine, which is closely correlated with fumonisin toxicity in vitro (13) and in vivo (1). Furthermore, boiled maize foods such as porridge (Africa) or polenta (Italy) have been shown to reduce FB1 by 23 and 8%, respectively (14), whereas boiling plus alkali treatment in this study reduced the total fumonisins by 50%, and ~50% of the total fumonisins in the tortillas was present as hydrolyzed fumonisins. In other studies, even greater reductions in total fumonisins were reported (6,7). Given greater reduction in total fumonisins through alkali treatment and the fact that hydrolysins were reported (6,7), given greater reduction in total fumonisins in the tortillas was present as hydrolyzed fumonisins in the earlier study, the results of the present study demonstrate clearly that the process of nixtamalization as practiced in Mayan communities under optimal conditions (adequate water) can effectively reduce the level of total fumonisins in cooked tortillas to a degree similar to that seen in studies using commercial or pilot-scale processes. In addition, the biological activity of the acetonitrile/water extract of the cooked tortillas was reduced relative to extracts of the uncooked maize based on the elevation in sphinganine, which is closely correlated with fumonisin toxicity in vitro (13) and in vivo (1). Furthermore, boiled maize foods such as porridge (Africa) or polenta (Italy) have been shown to reduce FB1 by 23 and 8%, respectively (14), whereas boiling plus alkali treatment in this study reduced the total fumonisins by 50%, and ~50% of the total fumonisins in the tortillas was present as hydrolyzed fumonisins. In other studies, even greater reductions in total fumonisins were reported (6,7). Given greater reduction in total fumonisins through alkali treatment and the fact that hydrolysins were reported (6,7), given greater reduction in total fumonisins in the tortillas was present as hydrolyzed fumonisins in the earlier study, the results of the present study demonstrate clearly that the process of nixtamalization as practiced in Mayan communities under optimal conditions (adequate water) can effectively reduce the level of total fumonisins in cooked tortillas to a degree similar to that seen in studies using commercial or pilot-scale processes. In addition, the biological activity of the acetonitrile/water extract of the cooked tortillas was reduced relative to extracts of the uncooked maize based on the elevation in sphinganine, which is closely correlated with fumonisin toxicity in vitro (13) and in vivo (1).

We thank Jency Showker for excellent technical assistance and Faustina de Leiva for hard work and dedication in preparation and cooking of the tortillas.

LITERATURE CITED

Downloaded from jn.nutrition.org by guest on January 15, 2011