SHORT COMMUNICATION

Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor)

Mukesh Jain a,*, Prem S. Choureya,b,c, Kenneth J. Bootea, Leon H. Allen Jr.a,c

a Agronomy Department, University of Florida, Gainesville, FL 32611-0680, USA
b Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
c United States Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, Gainesville, FL 32608-1069, USA

A R T I C L E I N F O

Article history:
Received 19 October 2009
Received in revised form 28 November 2009
Accepted 28 November 2009

Keywords:
Cell wall invertase
Grain sorghum
Heat stress
Phase transition
Pollen sterility

A B S T R A C T

Grain sorghum (Sorghum bicolor) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch deficiency in pollen (Jain et al., 2007). Sorghum plants were grown under season-long ambient (30/20 °C day-time maximum/night-time minimum) or high temperature stress (HS, 36/26 °C) environments, or reciprocally transferred for 5–10 days between either temperature regimens through panicle and microspore developmental stages. Quantitative RT-PCR analyses for CWI gene SbIncw1, plasma membrane H⁺-ATPase (Mha1) and sugar transporter proteins (OsSUT3 and OsMST7 homologs in sorghum), starch deficiency and pollen sterility data are presented to confirm HS-sensitivity of pre- and post-meiotic stages of sorghum microsporogenesis. Heat stress-induced reduction in Incw transcriptional activity during microspore meiosis was irreversible despite return of optimal growth temperature conditions through further reproductive development.

Introduction

Grain sorghum is the fifth most important cereal crop worldwide and feeds more than 500 million people in the developing countries. It is also an important biofuel crop in the US. Although drought-hardiness makes sorghum an important “failsafe” crop under arid and semi-arid conditions, it is often exposed to episodes of day- and night-time temperatures exceeding 32/22 °C. Persistent and/or episodic high temperature stress (HS) conditions significantly compromise crop performance (Prasad et al., 2006, 2008). The anticipated rise (1.4–5.8 °C) in global mean surface temperatures and postulated spatial increases in mean temperature and its variance or both distributional parameters will result in frequent episodes of high temperature conditions (IPCC, 2007). Hence, a critical evaluation of HS-induced changes is required to better understand crop growth and the physiology and reproductive behavior that ultimately determine grain yields.

Microspores represent a strong photosynthetic sink in cereals, second only to the developing endosperm with respect to assimilate partitioning and its utilization. The first mitotic division of haploid microspores is conspicuously followed by a rapid phase of starch biosynthesis. Starch accumulated during the advanced stages of pollen maturation is regarded as a metabolic marker for pollen maturity (Datta et al., 2001, 2002; Pring and Tang, 2004; Kong et al., 2007). In addition to providing energy for pollen tube germination, the accumulated starch reserves have an implicated role as compatible osmolytes in conferring desiccation tolerance (Hoekstra and Roekel, 1998; Kaplan et al., 2004).

Plant reproductive processes, especially microspore development, are more sensitive to impending stress than vegetative growth, as being shown in cereals (Abiko et al., 2005; Jain et al., 2007; Prasad et al., 2008) and other crops (Frank et al., 2009). Ample evidence corroborates that pollen viability is associated with adequate amounts of starch deposition (Datta et al., 2002; Kong et al., 2007). Stress-induced aberrant starch deposition profiles in microspores resulted in reduced male fertility across
variable crops including rice (Sheoran and Saini, 1996), wheat (Dorion et al., 1996), barley (Sakata et al., 2000), sorghum (Jain et al., 2007), tomato (Pressman et al., 2006) and bell peppers (Karni and Aloni, 2002). Likewise, targeted antisense repression of anther specific cell wall invertase (CWI) and SnRK1 genes in tobacco (Goetz et al., 2001) and barley (Zhang et al., 2001), respectively, showed perturbed sugar partitioning and starch deficiency which correlated with subsequent microspore sterility in transgenic plants.

CWI-mediated sucrose inversion is critical for establishment and subsequent maintenance of the microspore sink strength, thus successfully driving source-to-sink assimilate unloading in developing microspores (Goetz et al., 2001). Plasma membrane (PM) H+ -ATPase (Mha1) is the key transporter protein providing energized potential gradient across cell membrane subsequently regulating secondary active ion transport and nutrient trafficking channels. Co-suppression of endogenous and transgenic PM H+ -ATPase resulted in reduced pollen uptake of sugars and impaired male fertility in tobacco (Zhao et al., 2000). Likewise, coordinated up-regulation of PM H+ -ATPase, hexose (OsMST7) and sucrose transporters (OsSUT3), and a high ATP/ADP ratio coincident with accumulation of glucose, fructose and starch deposition were observed during pollen maturation in cytoplasmic male-fertile lines of rice, as opposed to male-sterile lines (Kong et al., 2007).


treatments F through H, HS25–35DAS) were interrupted by ambient temperatures during reproductive stages as: F:Amb25–35HS30–35DAS, G:HS25–30Amb30–35DAS and H:Amb25–35DAS. Following pollen emergence (35 DAS) across growth temperature treatments C through H, the plants were maintained under ambient growth conditions until reproductive maturity. See Fig. 1 for the schematic representation of the time-lines involved in each treatment.

Pollen viability and seed set measurements

In vitro pollen germination assays were carried out using a modified germination medium as described (Jain et al., 2007). At maturity, seed set was estimated as the ratio of seed-filled florets to the total number of florets on the tagged panicles, and expressed as a percentage of total potential seed sites.

Harvesting of microspores/young pollen and florets for RNA extraction

The pre-emergent (early) panicles with the tip protruding out of the flag leaf sheath were collected and harvested for microspores as described by Pring and Tang (2004). At this time, the microgametophytes were approximately 7-11 days prior to anthesis, and were represented by young early-mid microspores (pre- to post-miotic) at the base of the panicule developmentally progressing upwards through post-miotic young pollen near the panicle tip. Different developmental stages of florets (including the glumes, lemma, palea, lodicule and reproductive whorls) prior to anther dehiscence were plucked off the panicle branches and homogenized under liquid nitrogen for RNA extraction.

Real-time reverse transcription PCR

Total RNA was extracted in Trizol Reagent (Invitrogen, Carlsbad, CA) following the manufacturer's protocol. Five μg total RNA was digested with RNase free DNase I (Invitrogen), and reverse transcribed using the SuperScript™ First-Strand Synthesis System (Invitrogen) according to the manufacturer's protocol. Quantitative RT-PCR was performed using the DyNaMo™ HS SYBR® Green qPCR Kit (Finzymes, Espoo, Finland) and Chromo 4™ CFD supported by Opticon Monitor™ Software version 2.03 (MJ Research, Alameda, CA). The PCR reactions contained 400 nM of gene-specific primers and 2 μL of the 5-fold diluted RT reaction in a final volume of 20 μL. The thermal cycling protocol entailed
50 °C incubation for 2 min, followed by Tbr DNA polymerase activation at 95 °C for 15 min. The PCR amplification was carried out for 35 cycles with denaturation at 94 °C for 10 s, and primer annealing and extension at 55 and 72 °C for 30 s each, respectively. Optical data were acquired following the extension step, and the PCR reactions were subject to melting curve analysis beginning at 55 °C through 95 °C, at 0.1 °C s⁻¹. α-Tubulin (Tua4) was used as an internal reference control for qRT-PCR reactions. Gene-specific primers used for real-time PCR analyses are summarized in Table 1.

Starch quantification

Microspores were homogenized in hot ethanol and centrifuged to separate soluble sugars from starch. Starch content was determined in the pellet fraction following amyloglucosidase digestion (EC 3.2.1.3, from Aspergillus niger, Roche Diagnostics, Indianapolis, IN), followed by quantification of released glucose moieties in a microtitre plate assay as previously described (Datta et al., 2002).

Results

Following seedling emergence at 3 days-after-sowing (DAS) in ambient (30/20 °C day-time maximum/night-time minimum) temperature (Amb), the grain sorghum plants were grown at sinusoidal temperature regimes of 30/20 °C (ambient) and 36/26 °C (HS) in naturally sunlit, controlled environmental growth chambers as described. Vegetative-to-reproductive phase transition (panicle initiation) was visually discernible within 25–27 DAS in more than half of the sampled plants, followed by panicle emergence at 35 and 40 DAS at 30/20 and 36/26 °C treatments, respectively. Anthesis occurred within a 4–5 day period after panicle emergence at both temperature treatments. The short-term HS treatments involved reciprocal shift of growth temperature conditions at 25 and 30 DAS (coincident through panicle and flower whorls and young microspores) respectively (Fig. 1).

The data (obtained from two independent experiments) on total starch content in young pollen grains (post first mitosis, 30–35 DAS) was used as an internal reference control for qRT-PCR reactions. Duration and time of incident HS conditions prevalent during reproductive growth phase (3–25 DAS) thus confirming that reproductive success is critically dependent upon environmental cues available at the time of onset and further development of reproductive meristems.

conditions (treatment B) (Fig. 3b). Notably, sugar loading ability from apoplast could be partially recovered as long as the growth conditions during time of microspore development stayed ambient (treatments C and G vs. A and H). The high transcript abundance for treatments C and G despite poor pollen viability and low grain set indicates that these transporter protein functions are not the critical factors preventing grain set.

Discussion

Consistent with the previously published results, we reiterate a recurring theme underlying (heat, cold, and drought) stress-induced down-regulation in CWI expression and activity causing male sterility across various crop species including tomato (Pressman et al., 2006), rice (Oliver et al., 2005), wheat (Koonjul et al., 2007) and sorghum (present data; Jain et al., 2007). In cereals like wheat, oat and barley, the high photosynthetic contribution of glumes and hence, its effect on source-sink relationship, declines significantly after anthesis and later during grain filling (Ziegler-Jöns, 1989). A similar temporal decline in SbIncw1 expression in the glumes was discernible in developing sorghum caryopses (Jain et al., 2008). It is conceivable that symplastic isolation renders developing microspores essentially dependent upon inherent CWI and transporter protein activities for post-phloem assimilate unloading. At this stage, therefore, it is likely that CWI activity in glumes or other green sporophytic whors will have only minimal, if any, bearing towards microspore sink strength. However, immunolocalization (Jain et al., 2007) and real-time RT-PCR data (Fig. 3a) confirms that Incw expression in sorghum florets is under stringent transcriptional regulation and responsive towards environmental growth conditions.

The disconnect in the expression profiles for Incw1, Mha1, SUT3 and MST7-encoded transporter proteins during short-term HS treatments (Fig. 3a and b) does not conform to the proposed model for coordinated up-regulation of extracellular invertase activity and sugar transport in favor of apoplastic phloem unloading (Ehness and Roitsch, 1997), and may be indicative of functionally divergent regulatory mechanisms controlling sugar partitioning and utilization during male meiosis and overall reproductive development. Uncoupling of sugar cleavage and unloading capacity across microspore membrane may also be reflective of an aggravated respiratory demand in order to maintain structural and physiological integrity of heat-stressed microspores. Accumulation of glucose and fructose observed in the heat-stressed sorghum microspores (Jain et al., 2007) is in agreement with glucose-mediated control of H+-ATPase activity through phosphorylation-dependent 14-3-3 association in maize (Camoni et al., 2006). This speculated increase in sugar uploading and utilization for energy provision, and concomitant failure of Incw-mediated assimilate partitioning and sugar-to-starch metabolic transition can be argued on the basis of discreet spatio-temporal regulation (Fig. 3a) and presence of distinct CWI isoforms in gametophytic and sporophytic floral whors (Jain et al., 2007). The starch content, pollen fertility and seed set (Fig. 2) and transcript abundance data for Incw and sugar transporter proteins (Fig. 3; treatments C and G, vs. A and H) clearly reflect that developing microspores may require and upload sugars for maintaining turgor and/or metabolic needs in an Incw compromised background, but adequate assimilate partitioning in favor of sugar-to-starch metabolic transition is essentially dependent upon CWI-mediated sucrose catalysis and subsequent sugar uptake that finally determines pollen fertility. Goetz et al. (2001) also showed that exogenous carbohydrate supply could only partially relieve the metabolic arrest in an in vitro pollen maturation assay, in transgenic tobacco plants expressing antisense CWI gene under control of tapetum-specific promoter. A "feed forward" mechanism involving perception and amplification of sugar or hormonal signals leading to up-regulation of CWI activity and enhancement of sink strength during microsporogenesis can not be ruled out.

Nonetheless, the role of cell wall bound invertase activity in driving assimilate partitioning from the nutrient rich locular fluid bathing the developing microspores appears to be most critical and under stringent, irreversible transcriptional regulation in response to prevalent environmental cues. Finally, the presented data also indicate that the signals for successful deployment of CWI-mediated sugar-to-starch metabolic transition in developing microspores are perceived by sporophytic tissues early on during phase transition.

Acknowledgements

We thank Profs. D.R. Pring and J.C.V. Vu for critical reading of the manuscript. This work was a cooperative investigation between US Department of Agriculture (USDA)-Agricultural Research Service (ARS) and the Institute of Food and Agricultural Science, University of Florida, and supported in part by the USDA-ARS and United States-Israel Binational Agricultural Research and Development Fund (BARD Grant no. IS-3738-05R).
References