Review of microsporidia-mosquito relationships: from the simple to the complex

James J. Becnel, Susan E. White and Alexandra M. Shapiro

USDA/ARS Center for Medical, Agricultural and Veterinary Entomology, P.O. Box 14565, Gainesville, Florida 32604, USA

Key words: Microsporidia, mosquito, *Brachiola algerae*, *Vavraia culicis*, *Edhazardia aedis*

Abstract. Microsporidia in mosquitoes can be divided into two categories based on their life cycles and host-parasite relationships. Some species of microsporidia exhibit simple life cycles with one spore type responsible for oral (horizontal) transmission. They affect only one generation of the mosquito and are not usually host or tissue specific. *Brachiola algerae* (Weiser, 1947) and *Vavraia culicis* (Weiser, 1947) are examples of species isolated from mosquitoes with relatively straightforward life cycles (one spore type) and simple host-parasite relationships. *B. algerae* and a close relative of *V. culicis* have also been isolated from a vertebrate (human) host but sources for these infections are unknown. In contrast to *B. algerae* and *V. culicis*, polymorphic (heterosporous) microsporidia in mosquitoes are characterized by complex life cycles involving multiple spore types responsible for horizontal and vertical transmission. They affect two generations of the mosquito and some involve an obligate intermediate host. These microsporidia are generally very host and tissue specific with complex developmental sequences comprised of unique stages and events. The microsporidium *Edhazardia aedis* (Kudo, 1930) is a pathogen of *Aedes aegypti* and does not require an intermediate host. The developmental cycle of *E. aedis* is characterized by four sporulation sequences, two in the parental host and two in the filial generation. Recent speculation relative to the source of *B. algerae* human infection have implicated infected mosquitoes and raised concerns about the safety of mosquito microsporidia in general. The subject of this review is to compare and contrast three species of microsporidia from mosquitoes, two with broad host ranges (*B. algerae* and *V. culicis*) and one specific to mosquitoes (*E. aedis*). This review describes features that distinguish mosquito-parasitic microsporidia with simple life cycles and broad host ranges from truly mosquito-specific microsporidian parasites with complex life cycles.

INTRODUCTION

Microsporidia that infect mosquitoes have been studied for more than one hundred years on topics ranging from biological control to the effects of microsporidia on the development of human disease-causing organisms in mosquitoes (Becnel and Andreadis 1999). Microsporidia in mosquitoes are excellent model systems for conducting both basic and applied studies. This has led to important contributions to the field of microsporidiology in the areas of taxonomy, developmental cycles and host-pathogen relationships. There are considerable difficulties associated with the study of a complex parasite within a host that cannot be easily manipulated or colonized in the laboratory. Some of these obstacles can be overcome by the study of microsporidia in mosquitoes. First, most mosquitoes have relatively short life cycles (2–3 weeks), are readily manipulated in the laboratory, and many can be easily colonized. In addition, microsporidia are common to mosquitoes and include diverse groups with both simple and complex life cycles. Mosquitoes are also of medical importance as vectors of diseases to man and animals. The study of microsporidia and their mosquito hosts has therefore been extremely productive in resolving many basic questions concerning specific relationships between microsporidia and their hosts as well as resolving fundamental biological events and developmental sequences important to a better overall understanding of the microsporidia.

Recently, the mosquito pathogen *Brachiola algerae* (Vavra et Undeen, 1970) (syn. *Nosema algerae*) was identified as the cause of fatal myositis in a 57-year-old female patient (Coyle et al. 2004). This has led to speculation relative to the source of this human infection and raised concerns about the safety of mosquito microsporidia in general. The subject of this review is to compare and contrast three species of microsporidia from mosquitoes, two with broad host ranges (*B. algerae* and *V. culicis*) and one specific to mosquitoes (*E. aedis*). This review describes features that distinguish mosquito-parasitic microsporidia with simple life cycles and broad host ranges from truly mosquito-specific microsporidian parasites with complex life cycles.

HISTORY

One hundred years ago, Hesse (1904) was probably the first researcher to document a true microsporidian...
parasite of a mosquito when he described *Parathelohania legeri* (Hesse, 1904) Codreanu, 1966 from *Anopheles maculipennis* Meigen. Later, the most comprehensive study of these mosquito parasites at the time was a series of eight publications by Kudo (1921, 1922, 1924a, b, 1925a, b, 1929, 1930) under the general title “Microsporidia Parasitic in Mosquitoes.” Kudo (1921) conducted perhaps one of the earliest successful *per os* transmission experiments producing infections of *Culicospora magna* (Kudo, 1920) in *Culex restuans* Theobald by means of a feeding experiment. There was little activity in this area until the discovery of *Vavraia culcis* (Weiser, 1947) isolated from field populations of *Culex pipiens* Linnaeus in the Czech Republic. This was notable because subsequent studies with *V. culcis* documented *per os* transmission to mosquitoes as well as alternate insect hosts indicating this species had a broad host range (Canning 1957, Weiser and Coluzzi 1972, Weiser 1978). The ability to readily transmit *V. culcis* provided only the second opportunity to study in detail a microsporidian pathogen of mosquitoes. This was followed by the discovery and description of *Brachiola algerae* from a laboratory colony of *Anopheles stephensi* Liston (Vavra and Undeen 1970). These researchers determined that *B. algerae* was horizontally infectious to mosquito larvae when they were fed spores. Subsequent studies demonstrated that *B. algerae* had one of the broadest *in vivo* and *in vitro* host ranges known, infecting many different orders of insects as well as vertebrate hosts (see Brooks 1988 for a review).

The inability to transmit the “Thelohania-type” microsporidia in mosquitoes (primarily *Amblyospora* and *Parathelohania* species) remained an obstacle to life-cycle studies until Kellen and co-workers in the 1960s published a notable series of studies on mosquito-microsporidia relationships. They described and classified microsporidia in mosquitoes according to tissue specificity and host sex in which the sporogonic cycle occurred in transovarially infected progeny (Kellen and Lipa 1960, Kellen and Wills 1962a, b, Kellen et al. 1966a, b, 1967). This led to the important discovery of spore dimorphism and the role of transovarial transmission in some species of *Thelohania* (syn. *Parathelohania*) found parasitizing *Anopheles* mosquitoes. Hazard and Weiser (1968) reported that a binucleate spore formed in the adult female was responsible for transmitting the pathogen to progeny. Their studies revealed that in infected male larval progeny, uninucleate spores (meiospores) were produced. In infected female progeny, however, spore development was delayed until pupation and adult emergence. In these females, binucleate spores of the original type were produced to repeat the cycle. This represented the first clear documentation of a link between infections in adults and progeny and proved that the two morphologically distinctive spores found in larvae and adult hosts (formerly believed to belong to two genera) represented a single species. While the role of binucleate spores in transovarial transmission continued to be documented, the means by which these microsporidia were transmitted horizontally remained a mystery until the discovery that meiospores formed in larvae were infectious to a copepod intermediate host (Andreadis 1985, Sweeney et al. 1985). When ingested by mosquito larvae, the spores from the copepod intermediate host initiate a sequence of development that ends with binucleate spores in the adult female mosquito. Subsequently, *Edhazardia aedis* (Kudo, 1930) was described from *Aedes aegypti* (Linnaeus) with a life cycle comprised of both horizontal and vertical transmission involving two generations of the mosquito but without the involvement of a copepod intermediate host (Becnel et al. 1989). At least four genera, *Amblyospora*, *Hyalinocysta*, *Duboscquia* and *Parathelohania*, have been documented to require obligatory development in an intermediate copepod host. Detailed studies of these microsporidia have revealed numerous variations on the life cycle that is specialized for each species and host (Hazard and Oldacre 1975, Andreadis 1988, 2002, Sweeney and Becnel 1991, Becnel 1994).

Based on current knowledge, microsporidia in mosquitoes can be divided into two categories based on their life cycles and host-parasite relationships. Some species exhibit simple life cycles with one spore type responsible for oral transmission. They affect only one generation of the mosquito and are not usually host or tissue specific. *Brachiola algerae* and *V. culcis* are examples of species with one spore type and a simple host-parasite relationship. Other species are characterized by intricate life cycles involving multiple spore types responsible for horizontal and vertical transmission. They affect two generations of the mosquito and some involve an obligate intermediate host. These microsporidia (often termed polymorphic or heterosporous) are generally very host and tissue specific with complex developmental sequences comprised of unique stages and events. Well-studied species with complex life cycles are *Amblyospora duxenoides* Sweeney, Graham et Hazard, 1988 (Sweeney et al. 1988), *Amblyospora connecticus* Andreadis, 1988 (Andreadis 1988), *Amblyospora californica* (Kellen et Lipa, 1960) (Becnel 1992a), *Culicospora magna* (Becnel et al. 1987), *Hyalinocysta chapmani* Hazard et Oldacre, 1975 (Andreadis 2002, Andreadis and Vossbrinck 2002) and *E. aedis* (Becnel et al. 1989).

MICROSPORIDIA IN MOSQUITOES WITH SIMPLE LIFE CYCLES

Brachiola algerae (Fig. 1A) was isolated and described from a laboratory colony of *A. stephensi* by Vavra and Undeen (1970). Only one spore type has been identified (Figs. 2, 3) that is responsible for spread
MICROSPORIDIA IN MOSQUITOES WITH COMPLEX LIFE CYCLES

Edhazardia aedis is a highly infectious and virulent parasite of the yellow fever mosquito, A. aegypti (Hembree 1982, Hembree and Ryan 1982). This is a
Figs. 2–7. Spores of three mosquito-parasitic microsporidia. Fig. 2. Fresh diplokaryotic spores of *Brachiola algerae* in India ink preparation. Fig. 3. Transmission electron micrograph of the mature, diplokaryotic spore of *Brachiola algerae*. Fig. 4. Fresh uninucleate spores of *Vavraia culicis* in India ink preparation. One group of spores in a sporophorous vesicle. Fig. 5. Transmission electron micrograph of the mature uninucleate spore of *Vavraia culicis*. Fig. 6. Fresh uninucleate spores of *Edhazardia aedis*. Inset is a spore in India ink preparation demonstrating a mucous surface coat on the spore. Fig. 7. Transmission electron micrograph of the mature, uninucleate spore of *Edhazardia aedis*.
polymorphic (heterosporous) species that has four different sporulation sequences (Fig. 1 C) and, like Amblyospora, is both vertically and horizontally transmitted (Andreadis 1988). However, unlike Amblyospora, its life cycle does not involve an intermediate host. Details of its life cycle as characterized by Becnel et al. (1989) and Johnson et al. (1997) are described below.

Edhazardia aedis is horizontally transmitted to larval mosquitoes via oral ingestion of uninucleate-lanceolate spores that are released into the aquatic environment with the death of transovarially infected larvae (Figs. 6, 7). Spores readily germinate within the lumen of the midgut and initially infect epithelial cells of the gastric caeca. Here, the microsporidium undergoes a limited asexual multiplicative phase (schizogony) followed by gametogenesis. This results in the formation of uninucleate, pyriform gametes that possess a distinctive double-membraned papilla or nipple-like structure on the plasmalemma. Gametes subsequently undergo plasmogamy to form diplokaryotic stages that then develop into small uninucleate spores. These primary spores germinate quickly and are responsible for dissemination of E. aedis to other host tissues, most significantly the oenocytes. This portion of the life cycle is completed typically within 120 hours of ingestion of the lanceolate spore. Although some variation may occur, most of the mosquito larvae with light to moderate infections develop to adulthood wherein E. aedis exhibits a second asexual multiplicative phase (merogony). This takes place within host oenocytes that circulate within the haemocoel and move to areas surrounding the ovaries in female hosts. Sporulation occurs after the female takes a blood meal and this results in the production of a second uninucleate spore. This spore, often called the transovarial spore, is responsible for infection of the ovaries and subsequent transmission to the filial generation. In addition to being functionally distinct, the transovarial spore is larger, more oblong, and possesses a longer polar filament and smaller posterior vacuole than the early spore. Infected females exhibit reduced fecundity, longevity (Becnel et al. 1995) and blood-feeding success (Koella and Agnew 1997).

In larval progeny of the first generation, E. aedis invades fat body tissue and undergoes a third merogony, following which the diplokaryotic phase of the life cycle ends by two different processes, meiosis or nuclear dissociation. The meiotic sequence is similar to that which occurs in Amblyospora but it usually aborts and rarely forms meiospores. In the predominate nuclear dissociation sequence, the two members of the diplokaryon separate and undergo cytokinesis to form two independent haploid cells. These then undergo a sporogonial sequence to form large numbers of uninucleate spores. This process results in death of the larval host and the release of infectious uninucleate spores into the aquatic environment where they may be ingested by other susceptible mosquito larvae to complete the cycle.

Edhazardia aedis is infectious per os to several Aedes spp., Anopheles quadrinaculatus Say, Orthopodomyia signifera (Coquillett) and Toxorhynchites rutulus rutulus (Coquillett) (Table 1) but not species of Culex, Culiseta or Psorophora (Becnel and Johnson 1993, Andreadis 1994). However, E. aedis can not complete its life cycle in these alternate mosquito species as it is not transovarially transmitted to larvae of the filial generation (Becnel and Johnson 1993, Andreadis 1994). E. aedis is not infectious for a variety of nontarget aquatic organisms tested (Becnel 1992b). There is no information on the ability of E. aedis to grow in cell culture.

DISCUSSION

Microsporidia that infect immunodeficient humans fall into two main groups: those that are specific parasites of vertebrates and those that are acquired from unknown sources. Recently, two microsporidia with mosquitoes as type definitive hosts (B. algerae and V. culicis) have been implicated as potential infections in humans. In order to more easily compare these latter species with E. aedis (a representative of the “true” mosquito microsporidia), pertinent features and characteristics are presented in Table 1. Both B. algerae and V. culicis have broad host ranges, with B. algerae having perhaps the largest known host range for any species of microsporidia. There is a large group of closely related microsporidia in mosquitoes that are very host specific and have complex life cycles (Edhazardia, Amblyospora, Parathelohania, etc.). These relationships have been established with classical morphological and life-cycle studies (Becnel 1994) and confirmed with molecular analysis (Vossbrinck et al. 2004a, b). This same molecular analysis has confirmed that B. algerae and V. culicis are unrelated to this group of “true” microsporidia from mosquitoes and are unrelated to one another. This raises the question as to whether mosquitoes are the natural hosts for B. algerae and V. culicis (although originally isolated from mosquitoes). In the case of Brachiola, there has recently been another species, Brachiola gambiae Weiser et Žižka, 2004, described from Anopheles gambiae Giles and A. melas Theobald from Liberia (Weiser and Žižka 2004). But questions have been raised about distinctions between the genera Brachiola and Ancalalia as both have Nosema-type life cycles with external tubulovesicular structures on developmental stages that may play a role in the ability of the parasites to grow in a variety of hosts and tissues (Koudela et al. 2001). The two species in the genus Ancalalia (A. meligethi (Issi et Radishcheva, 1979) and A. varivestis (Brooks, Hazard et Becnel, 1985) were isolated from coleopteran hosts and
Table 1. Features of three mosquito-parasitic microsporidia.

<table>
<thead>
<tr>
<th>Species</th>
<th>Brachiola algerae (Illinois isolate)</th>
<th>Vavraia culicis (Florida isolate)</th>
<th>Edhazardia aedis (Thailand isolate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original mosquito host</td>
<td>Anopheles stephensi</td>
<td>Aedes albopictus</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>Other mosquito host</td>
<td>Aedes, Culex, Anopheles, Armigeres, Wyeomyia</td>
<td>Aedes, Culex, Anopheles, Culiseta</td>
<td>Aedes, Anopheles, Orthopodomyia, Toxorhynchites</td>
</tr>
<tr>
<td>Alternate invertebrate hosts (per os or injection)</td>
<td>Per os: Coleoptera, Diptera*, Hemiptera*, Lepidoptera*, Digenea</td>
<td>Per os: Diptera, Lepidoptera</td>
<td>None</td>
</tr>
<tr>
<td>Vertebrate hosts</td>
<td>Rodentia, human isolates</td>
<td>None, close to Trachipleistophora hominis</td>
<td>None</td>
</tr>
<tr>
<td>Cell lines</td>
<td>Invertebrate and vertebrate</td>
<td>Invertebrate</td>
<td>None</td>
</tr>
<tr>
<td>Nuclear arrangement</td>
<td>Dipllokaryotic</td>
<td>Unikaryotic</td>
<td>Unikaryotic and dipllokaryotic</td>
</tr>
<tr>
<td>Tissues infected</td>
<td>Systemic (can vary with host)</td>
<td>Systemic</td>
<td>Midgut, oenocytes, fat body</td>
</tr>
<tr>
<td>Life cycle</td>
<td>One-host, larvae and adults</td>
<td>One-host, larvae</td>
<td>One-host, larvae and adults</td>
</tr>
<tr>
<td>Vertical transmission</td>
<td>Transovum</td>
<td>No</td>
<td>Transovarial</td>
</tr>
<tr>
<td>Molecular relationship</td>
<td>Brachiola clade</td>
<td>Pleistophora, Vavraia clade</td>
<td>Amblyospora clade</td>
</tr>
</tbody>
</table>

*Also infected by injection.

in the case of *V. varivestis*, it is capable of infecting some other beetle species and a lepidopteran host (Brooks et al. 1985). If members of these two genera also have broad host ranges similar to *B. algerae*, sources for possible human infections by this group would probably extend beyond mosquitoes.

Vavraia culicis has not been isolated from a vertebrate host but molecular data indicate a close relationship with the human pathogen *Trachipleistophora hominis* Hollister, Canning, Weidner, Field, Kench et Mar-riot, 1996 and *V. oncoperae* (Milner et Beaton, 1977) from a lepidopteran host; this cluster also contains the fish microsporidium *Pleistophora typicalis* Gurley, 1893 (Cheney et al. 2000). Athymic mice were infected with *T. hominis* when inoculated orally, intraperitoneally or with intramuscular injections. *V. culicis* and several species of *Pleistophora* from fish were inoculated into athymic mice with intramuscular injections but infections were not established. *T. hominis* also infected several species of mosquitoes when spores were fed to larvae (Weidner et al. 1999). This led to speculation that there are microsporidian species in biting flies that may be the source for infections found in immunodeficient humans (Cheney et al. 2000). Given that *V. culicis* readily infects a number of lepidopteran hosts and that a close relative *V. oncoperae* was isolated from a lepidopteran, it seems reasonable to expand the possible sources for *Trachipleistophora* infections in man to other insects.

CONCLUSIONS AND FUTURE DIRECTIONS

Microsporidia in mosquitoes have served well as model systems for understanding complex host-parasite relationships, life cycles, developmental cycles as well as addressing taxonomic issues. Studies on mosquitoes led to the discovery of dimorphism for the microsporidia and documented that a single species of microsporidia can possess two morphologically and functionally distinct spore types (Hazard and Weiser 1968). To date, the only intermediate host systems for microsporidia have been determined for species of *Amblyospora* (10 species) (Andreadis 1985, 1999, Sweeney et al. 1985, 1990, Becnel 1992a, White et al. 1994, Becnel and Andreadis 1998, Micieli et al. 1998, 2000a, b,), *Para-theolohania* (1 species) (Avery and Undeen 1990), *Duboscquia* (1 species) (Sweeney et al. 1993) and *Hya-linocysta* (1 species) (Andreadis 2002) from mosquito hosts; all of these require an obligate copepod intermediate host to complete the life cycle. Studies on this latter group of genera have also been instrumental in understanding polymorphism in microsporidia and the role of morphologically and functionally distinctive spore types. Knowledge on developmental and sexual sequences for microsporidia has been greatly influenced by studies in mosquitoes with the identification of gametes and the formation of diplokarya and mechanisms for haplotype by either meiosis or nuclear dissociation (Becnel 1994). With respect to
taxonomy, recent molecular phylogenetic analyses of the small subunit rDNA sequences of mosquito-parasitic microsporidia (Baker et al. 1998, Vossbrinck et al. 1998, 2004a, b) confirm the relatedness of the “true” mosquito microsporidia and suggest that mosquitoes and their parasites have co-evolved. Finally, B. algerae and V. culicis isolated from and studied in mosquitoes has provided crucial foundational information that have become highly relevant to studies of microsporidia in vertebrates and specifically man (Vavra and Undeen 1970, Undeen 1975, Undeen and Alger 1976).

If the accomplishments during the past 100 years are indicative of future success, then the study of microsporidia in mosquitoes promises to contribute significantly to both invertebrate and vertebrate microsporidology. For the “true” mosquito microsporidia, new groups with complex life cycles will continue to reveal variations and new pathways with a better understanding of the basic mechanisms for host exploitation. For B. algerae, V. culicis and related forms with broad host ranges, comparative studies utilizing the mosquito and human isolates should provide additional clues for resolving the epidemiology of vertebrate and human microsporidia transmission. It is truly an exciting time for studies on mosquito-parasitic microsporidia with high expectations for the next 100 years.

Acknowledgements. We thank Dr. Graham White (University of Florida) and Dr. Christopher Geden (USDA/ARS) for constructive comments and editorial remarks on an earlier version of the manuscript.

REFERENCES

BECNEL et al.: Microsporidia-mosquito relationships

KUDO R. 1922: Studies on microsporidia parasitic in mosquitoes. II. On the effect of the parasites upon the host body. J. Parasitol. 8: 70–77.

Received 14 September 2004

Accepted 17 December 2004