Delayed Senescence and Disease Tolerance of Tomato Plants Cultivated in Cover Crop Mulch Correlates with Accumulation of Specific Gene Products

Vinod Kumar1, Douglas J. Mills2, James D. Anderson3 and Autar K. Mattoo1,*
1 United States Department of Agriculture, ARS’s H.A.W. Beltsville Agricultural Research Center-W, Building 010A, Vegetable Laboratory, Beltsville, MD 20705-2350, USA
(*Corresponding author)
2 Weed Science Laboratory and 3 Plant Sciences Institute, Beltsville, MD 20705-2350 USA

Keywords: Mulch, vetch, plastic, Lycopersicon esculentum, defoliation, disease, proteins

Abstract
Vegetable production is heavily dependent upon high off-farm inputs of polyethylene (plastic) mulch, nitrogen fertilizer and pesticides. Such a production practice potentially contributes to the unintentional environmental pollution with fertilizer and pesticides as well as water run off and soil erosion. This raises serious environmental concerns for human and animal health. The integration of on-farm biological inputs into vegetable production system is one potential means of reducing the dependence on off-farm inputs. In recent years, alternative agriculture practices have tested cover crops like hairy vetch (Vicia villosa) as on-farm biological inputs that have the potential to reduce both erosion and the use of agrochemicals without impacting the yield or quality of the produce. Field-grown, fresh market tomato (Lycopersicon esculentum L.) plants cultivated in hairy vetch mulch display reduced defoliation and tolerance to disease as compared to plants cultivated in the plastic mulch. We have initiated a molecular approach to test whether these beneficial attributes are linked to changes in the expression profiles of one or more specific gene products. The data indicated that vetch-grown tomato plants have increased accumulation of transcripts and proteins that are central to delayed senescence and disease suppression.

INTRODUCTION
US consumer demand for fresh market vegetables has increased considerably in recent years due to their contribution to human health. Vegetables and fruits are rich sources of vitamins, minerals and fiber. Conventional production methods have met these demands but compromised on the environmental and social issues because these production systems heavily rely on materials synthesized off the farm, such as polyethylene mulch, nitrogen fertilizer and pesticides. The current reliance on off-farm inputs will continue unless profitable, lower-input systems for fresh market production are developed. The integration of on-farm biological inputs into vegetable production systems is one potential means of reducing the current dependence on off-farm inputs. Cover crops represent on-farm biological inputs that have the potential to reduce the use of polyethylene mulch, fertilizer and pesticides (Abdul-Baki et al., 1996a, b; Creamer et al., 1996). The benefits of cover crops include improvements in soil preservation (Flach, 1990), soil health (McVay et al., 1989), weed suppression (Teasdale, 1993; Creamer et al., 1996), and the reduction of soilborne diseases (Rothrock et al., 1995; Candole and Rothrock, 1997).

Hairy vetch has been used successfully as cover crop/organic mulch for growing processing tomato (Abdul-Baki et al., 1996a). In most cases, marketable yield of fresh market tomatoes was equivalent or greater in hairy vetch mulch as compared to black polyethylene mulch (Abdul-Baki et al., 1996a; Mills et al., 2002b). In addition, vetch decomposition provided nitrogen reducing the need for commercial nitrogen input (Abdul-Baki et al., 1997); nitrogen content of hairy vetch aerial biomass has been estimated at 126-169 kg ha⁻¹. Fresh market tomato production in hairy vetch mulch is
economical as compared to production using black polyethylene mulch (Kelly et al., 1995).

Cover cropping has been shown to suppress disease in some vegetable and fruit crops. The incidence of *Phytophthora* blight was reduced in peppers grown in a wheat cover crop compared to bare soil and polyethylene mulch (Ristaino et al., 1997). This reduction in disease incidence affected dispersal of propagules of *Phytophthora capsici*, the causal agent of *Phytophthora* blight (Ristaino et al., 1997). Sudangrass was shown to reduce the splash dispersal of *Colletotrichum acutatum* conidia and has the potential to manage anthracnose of strawberry (Ntahimpera et al., 1998). Compared to no soil cover, sand and plastic mulch, the incidence of leaf rot disease of strawberry was reduced by using straw as a soil cover to reduce the splash dispersal of *P. cactorum* (Madden and Ellis, 1990). Cotton grown in hairy vetch (*Vicia villosa* Roth)-amended soil exhibited reduced incidence of black root rot, caused by *Thielaviopsis basicola* (Candole and Rothrock, 1997). The reduction of black root rot incidence correlated with increased ammonia levels in the soil (Candole and Rothrock, 1997). Compared to winter fallow, reduced soil levels of *T. basicola* were observed in a hairy vetch cover crop (Rothrock et al., 1995). Similarly, foliar disease was reduced in tomato plants grown in hairy vetch compared to bare soil (Mills et al., 2002a). In addition, fruit produced in hairy vetch mulch appeared to be more suitable for fresh-cut slices than those grown in black plastic (Hong et al., 2000).

The advantages of cover crop cultivation seem impressive. However, not much is known about the cellular processes impacted, signaling factors involved or molecular mechanisms that are fundamental to vetch-induced longevity and disease-suppression. To help understand these mechanisms, we initiated studies to identify genetic components that are regulated in plants cultivated in vetch-mulch. This report presents our findings to date.

HYPOTHESIS

Our hypothesis is that controlled release of carbon and nitrogen metabolites during water-mediated decomposition of vetch results in a certain carbon/nitrogen (C/N) ratio that influences expression of genes associated with senescence, longevity and/or disease infestation. This hypothesis is based on the following observations in the literature:

1. Sugars impact photosynthesis, nitrogen metabolism, sucrose and starch metabolism, and defense mechanisms by regulating a few key genes (Sheen, 1994; Koch, 1996; Sheen and Jang, 1997).
2. Nitrate regulates carbon metabolism, resource allocation, root development and flowering (Koch, 1997; Wang et al., 2000).
4. Nitrate is readily reduced to ammonia and subsequently incorporated into amino acids (Koch, 1997; Stitt, 1999).

RESULTS AND DISCUSSION

Severer Foliar Disease Levels and Leaf Defoliation Occur in Black Polyethylene than in Hairy Vetch Mulch

The onset of foliar disease was significantly delayed in hairy vetch-grown plants compared to those cultivated on black polyethylene. For example, foliar disease in plastic beds exceeded 41% at 84 days after transplant compared to hairy vetch beds that showed remarkably little sign of disease onset during a field test in year 2000. Similarly, plants grown in black polyethylene beds lost ~33% of their foliage at 84 days after transplant whereas those grown in hairy vetch beds lost only ~11% of their foliage in the same time frame (Fig. 1).
Delay in Leaf Senescence in Hairy Vetch Tomato Plants Correlates with Delayed Disappearance of Senescence-Related Proteins

We used protein fractionation on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in conjunction with immunoblots as a first step towards cataloging differential changes, if any, in the steady-state levels of proteins isolated from plastic or vetch grown tomato leaves. Soluble and membrane proteins isolated from leaf tissues of plants at different developmental stages were fractionated on linear gradient (10-20%) acrylamide gels (Mattoo et al., 1981). The fractionated proteins were either stained with Coomassie Brilliant Blue or electrotransferred to insoluble matrices for immunoblot analysis.

To ascertain that delayed senescence in the vetch-grown plants is reflected by changes in the known, senescence-marker proteins, we employed antibodies raised against ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), cytosolic glutamine synthetase (GS-1), and carboxypeptidase. No marked differences were apparent when the protein gels were stained with Coomassie blue. However, immunoblots revealed interesting data.

The level of nuclear-encoded small subunit of Rubisco declined by nearly 70% in plants grown under polyethylene compared to 32% in vetch-grown plants by 108 days after transplant. Under these conditions, the level of plastid-encoded large subunit of Rubisco decreased by about 78% in plants grown under polyethylene compared to ~5% in vetch-grown plants. Likewise, levels of GS-1 appeared to remain stable for a longer period in vetch-grown plants compared to those grown under polyethylene.

In comparison, the pattern of vacuole localized carboxypeptidase, implicated in the degradation of reserve proteins (Mehta et al., 1996), was similar in vetch-grown and polyethylene-grown plants. Similar patterns with no differential accumulation between the two cultivation conditions were found for such proteins as α-ATPase, β-ATPase, CP43, plastocyanin, cyt b$_{59}$, and PR-P-Q.

These data confirm that indeed the two important proteins, Rubisco and GS-1, whose disappearance is an early indicator of senescence (Mehta et al., 1992), are long-lived in vetch-grown plants compared to the conventionally cultivated plants. Further, results with other antibodies indicated that several other proteins are not modulated in this way. The questions are: what is the signaling pathway and what components in the hairy vetch soil regulate the expression of the beneficial genes? Do roots interact with soil microflora to generate a signal that is translocated to the foliage? Alternatively, are the beneficial responses exerted merely by differences in C/N levels?

CONCLUSION

We confirm here that tomato plants grown in hairy vetch mulch display increased crop longevity perhaps due to delayed senescence. In addition, we have observed that they have reduced foliar disease. These observations have important yield implications and are consistent with earlier studies (Abdul-Baki, et al., 1996a).

Glutamine synthetase (GS-1) catalyzes the first major step converting nitrogen into an organic form (Lam et al., 1995). Its stable nature in vetch-grown plants is reflected in delayed senescence. Therefore, it is a good candidate for rate limiting nitrogen assimilation and subsequent incorporation into proteins. Over-accumulation accompanied with higher stability of a few gene products central to senescence suggests that a select group of genes responds to changes in environmental signals associated with hairy vetch mulch. Upon degradation under moist conditions, hairy vetch mulch alters the carbon and nitrogen balance in soils. Yeast and bacteria have developed mechanisms to respond to changes in the levels of carbon and nitrogen metabolites, commonly referred as C:N-sensing. Such carbon- and nitrogen-mediated sensing mechanisms regulate the expression of a wide range of genes known to participate in growth and development (Coruzzi and Zhou, 2001). Why this regulation is restricted only to a few genes remains a focal point of our future investigation. Our current efforts on PCR-select cDNA subtraction and DNA microarray analysis of transcripts derived from vetch and plastic grown tomato can provide a useful tool in our attempts to isolate regulatory group of genes (Fig. 2).
Literature Cited
strategies and fungicide spray programs. Plant Dis. 86:955-959.
Figures

Fig. 1. Field grown tomato plants 82-days after transplant on plastic (A) and vetch (B) mulch.

Fig. 2. A model representing the molecular road map in identifying critical genes involved in disease tolerance and delayed defoliation of vegetables produced through sustainable farming practices. This model is based on the assumption that vetch mulch-induced beneficial attributes in tomato plants are controlled at transcriptional and/or translational levels by a group of regulators, resulting in higher steady-state levels of key proteins that are central to disease suppression, increased longevity and delayed senescence.