PINNATANINE AND OXYPINNATANINE.
NOVEL AMINO ACID AMIDES FROM
STAPHYLEA PINNATA L.

M. D. GROVE,* D. WEISLEDER and M. E. DAXENBICHLER
Northern Regional Research Laboratory, Agricultural Research Service, U.S. Department of
Agriculture, Peoria, Illinois 61604, U.S.A.

(Received in USA 27 March 1973; Received in U K for publication 14 May 1973)

Abstract—Two novel amino acid amides, pinnatanine and oxypinnatanine, have been isolated from Staphylea pinnata L. Their respective structures have been established as \(N^5-(2\text{-hydroxymethylbutadienyl})-L\text{-allo-\(\gamma\text{-hydroxyglutamine} \) and \(N^5-(3\text{-hydroxymethyl-2,5-dihydro-2-furyl})-L\text{-allo-\(\gamma\text{-hydroxyglutamine} \) by spectral methods and chemical degradation.}

Seed from the shrub Staphylea pinnata L. (European bladdernut, family Staphyleaceae) was reported by VanEtten et al. 1 to exhibit a most unusual amino acid composition when compared with seed from 200 other angiospermous plant species. In addition to unusually high amounts of isoleucine and low amounts of several common amino acids, two unidentified component acids were prominent in the hydrolysate of S. pinnata seed meal. Detailed investigation of unhydrolyzed seed meal has shown it to be a rich source of two novel derivatives of \(\gamma\text{-hydroxyglutamine} \). The first compound isolated, designated as pinnatanine and characterized as \(N^5-(2\text{-hydroxymethylbutadienyl})-L\text{-allo-\(\gamma\text{-hydroxyglutamine} \) (I), was the subject of a recent communication.} 2 We now report studies on a second amide, oxypinnatanine, which has been identified as \(N^5-(3\text{-hydroxymethyl-2,5-dihydro-2-furyl})-L\text{-allo-\(\gamma\text{-hydroxyglutamine} \) (2) as well as experimental details of the isolation and characterization of 1.

Upon acid hydrolysis, both pinnatanine (1), \(C_{19}H_{18}N_2O_5 \), and oxypinnatanine (2), \(C_{19}H_{18}N_2O_5 \), afforded the \(C_5H_5N_2O_5 \) amino acid, \(L\text{-allo-\(\gamma\text{-hydroxyglutamic acid} \ [i.e., 2(5), 4(5)]. The acid hydrolysate from each compound also contained a CH₂Cl₂ soluble product which accounted for the remaining five C atoms.

For pinnatanine, a five-C fragment was not isolated as such, but rather a \(C_{10}H_{12}O_2 \) unsaturated dialdehyde was obtained. Identification of this dialdehyde as 4-vinyl-1-cyclohexene-1,4-dicarboxaldehyde (3) was based on its IR, NMR and mass spectral (MS) properties and by direct comparison with an authentic sample prepared by synthesis. 3 Compound 3 presumably was formed via Diels-Alder dimerization of 2-methylene-3-butenal, the hydrolysis product expected on the basis of interpretation of NMR, UV and compositional data on 1. 2

Acetylation of pinnatanine gave diacetyl lactone 4 whose NMR spectrum exhibited NH-proton doublets at \(\delta \text{ 7.20 and 8.87, which disappeared upon addition of } 1\text{N NaOD. Spin decoupling experiments with 4 showed that the } \delta \text{ 7.20 signal was coupled to the } \alpha\text{-proton of the amino acid lactone at } \delta \text{ 4.51 and that the } \delta \text{ 8.87 proton was coupled to the lowfield vinyl proton doublet at } \delta \text{ 6.92. These results demonstrated that the hydroxymethylbutadienyl moiety is attached to the amide nitrogen rather than to the nitrogen or oxygen of the } \gamma\text{-hydroxyglutamyl portion. Evidence that pinnatanine is an } \alpha\text{-amino-} \gamma\text{-hydroxy acid (1) and not an } \alpha\text{-hydroxy-} \gamma\text{-amino acid was provided by measuring the apparent dissociation constant of the amino group and a downfield shift in the NMR signal for the } \alpha\text{-proton at pH 1.2.}

The NMR spectrum of oxypinnatanine (D₂O) exhibited two one-proton multiplets at \(\delta \text{ 3.92 and 4.33 (q, } \text{ } J = 5.5 \text{ and 7.5 Hz) coupled to a two-proton multiplet at } \delta \text{ 2.26, a pattern essentially identical to that observed with 1 due to the } \gamma\text{-hydroxy-
Acetylation of oxypinnatanine gave a crystalline diacetyl lactone 6 (C_{14}H_{11}N_{2}O_{7}), which had IR bands at 1795 (γ-lactone) and 1740 cm⁻¹ (ester C=O). Its NMR spectrum (CDCl₃) exhibited two acetyl methyl singlets at δ 1.99 and 2.05 and two NH-proton doublets at δ 6.85 (J = 7 Hz) and 7.36 (J = 9.5 Hz). Upon irradiation at δ 7.36, a broad one-proton multiplet at δ 6.42 sharpened and could be assigned to the C-1 proton of the dihydrofuran ring. An unresolved six-proton complex appeared at δ 4.5-4.9, which included the dihydrofuran and acetoxy methylenes and two lactone methine protons. Irradiation at δ 4.68 collapsed the NH-proton doublet at δ 6.85 to a singlet: the δ 6.6-4.2 multiplet to a quartet (1 J = 1.5 and 9.5 Hz); and a δ 6.11 multiplet, assigned to the dihydrofuran vinyl proton, to a doublet (J = 1.5 Hz). Signals observed at δ 6.42 and 6.11 with 6 correspond to the δ 6.37 and 6.17 resonances exhibited by oxypinnatanine. These results show that the nonamino acid portion of oxypinnatanine, as in pinnatanine, is attached to the amide nitrogen of γ-hydroxyglutamine.

Isomeric structure 7, which could also yield 5 upon hydrolysis, was eliminated from consideration by degrading oxypinnatanine to the monodeuterated 2-methyl-1d-1,4-butanediol unobtainable from 7. This result established 2 as the correct formula for oxypinnatanine, which has the same carbon skeleton as 1.

The precursor (8) required for degradative studies was obtained in 75% yield by hydrogenolysis of the allylic acetate 6. The product was isolated by fractional crystallization and had no ester carbonyl absorption in the IR. Its NMR spectrum (CD₂OD) contained a methyl doublet at δ 1.07 (J = 6 Hz) and one acetyl methyl singlet at δ 1.98. The C-1 proton of the tetrahydrofuran appeared as a doublet at δ 5.16 (J = 5.5 Hz).

A model compound, 2-methyl-1,4-butanediol diacetate (9), was prepared by NaBH₄ reduction of α-methyl-γ-butyrolactone, followed by acetylation of the resulting diol. The NMR spectrum of 9 showed the C-1 methylene as a doublet at δ 3.92 and the C-4 methylene as a triplet at δ 4.11. Although the molecular ion at m/e 188 was absent in the MS of 9, an M+1 ion at m/e 189 was
observed because sample pressure was excessive. The base peak appeared at m/e 68 (M - 2 HOAc). Reduction of the lactone with NaBD₄ led to the dioxide of 10, which gave an NMR spectrum that lacked a δ 3-92 signal yet exhibited the expected two-proton triplet at δ 4-11. The MS showed an M + 1 ion at m/e 191 and a base peak at m/e 70.

Hydrolysis of 8 followed by NaBD₄ reduction and acetylation should yield 11. Similar degradation of the corresponding hydrogenolysis product from 7 would, however, give 12, which could be distinguished from 11 by comparison of integrated NMR signals at δ 3-92 and 4-11. Application of this degradation scheme to the hydrogenolysis product from acetylated oxypinnatanine afforded a diacetate whose MS gave an M + 1 ion and a base peak at m/e 69 (M - 2 HOAc) indicating incorporation of one deuteron. Since the NMR spectrum showed a one-proton doublet, broadened by H-C-D coupling, at δ 3-91 and a two-proton triplet, at δ 4-11, structure 11 for the degradation product was established.

The occurrence of these novel derivatives of γ-hydroxyglutamine is not restricted to S. pinnata. Both 1 and 2 are also present in seed of Hemerocallis fulva L. (common orange day lily, family Liliaceae) as shown by paper chromatography and NMR. Oxypinnatanine is likely the amino acid reported several years ago in Phlox decussata (family Polemoniaceae). This compound also gave γ-hydroxyglutamatic acid and ammonia upon hydrolysis; however, the remainder of the molecule was not identified.

EXPERIMENTAL

All m.ps were determined on a Fisher-Johns® block and are uncorrected. Optical rotations were taken on a Bendix 1169 polarimeter. The following spectrometers were used: UV, Beckman DK-2A; IR, Perkin-Elmer 337; NMR, Varian HA-100 with TMS or TSP [sodium 2,2,3,3,-tetradeutero-3-(trimethylsilyl)propionate] as internal standards and chemical shifts reported in δ (ppm) units; MS, Du Pont (CEC) 21-492-1. GLC-MS analysis was done as previously described on a 2 ft x ¼ in. stationary phase; Apiezon L column programed from 50 to 230° at 5°/min. TLC analyses were carried out on Silica Gel G-coated plates.

Extraction and preliminary fractionation. Light petroleum defatted seed meal (15 g) from Staphylea pinnata was extracted twice at room temp for 1 hr with EtOH-H₂O (7:3) and once with abs EtOH. The combined extract was concentrated to near dryness, taken up in warm H₂O (50 ml), and extracted with EtO (5 x 25 ml). The concentrated aqueous phase (498 g) was chromatographed on silica gel (270 g, 70-325 mesh) and the following 50-ml fractions were collected: 1-34, iso-PrOH-H₂O (65 mg, m.p. 82.28, [α]° +36° (c, 0.5 g in H₂O) (lit. 82.28 [α]° +20.5° (c, 0.5 g in HOAc-n-BuOH-acetone (3:50:50) and heating at 110°) revealed two major red zones.

Pinnatanine (1). Silica gel column fractions 10-26 were combined, partially concentrated, and refrigerated to give colorless needles of 1 (526 mg); m.p. dec. starts 175°; [α]° 2-3° (c, 0.5 g, H₂O). TLC analysis of 1 showed an Mₐ 120 (M - 2 HOAc) indicating incorporation of one deuteron. Since the NMR spectrum showed a one-proton doublet, broadened by H-C-D coupling, at δ 3-92 and a two-proton triplet, at δ 4-11, structure 11 for the degradation product was established.

Acid hydrolysis of pinnatanine (1). A soln of 1 (250 mg) in 2N H₂SO₄ (10 ml) was heated under reflux for 3 hr. cooled, and extracted with CH₂Cl₂. The aqueous phase was decolorized with charcoal, filtered through Celite, and made alkaline to pH 9 with 2N NaOH. The solvent was allowed to stand for 1 hr, acidified to pH 3.5 with 2N HCl, and concentrated. An aqueous soln of the concentrate was applied to a column of Bio-Rad AG 50W-X8 cation exchange resin (acid form, 50 g) which was eluted with H₂O (375 ml) and 2N NH₃. Ninhydrin positive fractions eluted by NH₃ were combined, concentrated, and applied to a column of AG 1-X4 anion exchange resin (acetate form, 50 ml). The column was eluted with H₂O (120 ml) and 0.5 N HOAc. Ninhydrin positive fractions eluted by HOAc were combined, partially concentrated, and refrigerated. The resulting crystals were recrystallized from EtOH-H₂O to give l-allo-γ-hydroxy glutamic acid (65 mg); m.p. 182-185° dec.: [α]° 13-2° (c, 0.5 g, H₂O) (lit. 6° [α]° 13-6°); IR (KBr) 1715 (acid C=O), 1630 cm⁻¹ (-COO⁻), superimposable on that of an authentic sample: NMR (D₂O) δ 2.31 (2H, m. O-CH=CH-CH-N), 3.92 (1H, m. CH₂-CH=N), 4.32 (1H, m. CH₂=CH-O). (Found: C, 49.12; H, 6.66; N, 11.30. C₈H₁₈N₂O₇ requires: C, 49.18; H, 6.55; N, 11.51%).
The CH₂Cl₂ soluble portion of the hydrolysate was dried (Na₂SO₄) concentrated, and chromatographed on silica gel (3 g). The major component (50 mg) was eluted with benzene-acetone (99:1) to give 3 as a yellow oil: TLC Rf 0.4 [benzene-acetone (95:5)]; sprayed with 3% ceric sulfate in 3N H₂SO₄ and heated at 120°C; UV (EtOH) max 230 nm (ε 4,350); IR (CHCl₃) 2815 and 2715 (aldehyde CH=CH₂), 1725 (aldehyde C=O). 1680 (α,β-unsaturated aldehyde C=O); 1645 (C=O) 994 and 917 cm⁻¹ (CH₂=CH₂); NMR (CDCl₃) δ 1.62-2.96 (6 H, m, three CH₃), 5.14 and 5.32 (1H each, two, q., J = 1 and 17 Hz and J = 1 and 11 Hz, CH₃=CH₂=CH₂), 5.74 (1H, q., J = 11 and 17 Hz, CH₃=CH₂=CH₂), 6.60 (1H, m, CH₃=CH₂=CH₂), 9.36 (1H, s, CHO). 4·10 (1H, s, CHO): MS m/e 164 (M⁺, C₆H₄O₂). Dioxime, m.p. 135·5-137·5.

4-Vinyl-1-cyclohexene-1,4-dicarboxaldehyde (3). Compound 3 was prepared by NaOAc-catalyzed condensation of crotonaldehyde with formaldehyde as described by Pummerer et al. The benzene extract from the reaction mixture was purified by filtration through silica gel in CHCl₃ followed by distillation through a spinning band column to give 3: b.p. 80°C (0·25 mm); Dioxime, m.p. 135·5-137·5.

Acetylation of pinannatine (1). A soln of 1 (74 mg) in Ac₂O-pyridine (3 ml each) was kept at room temp for 2 days. The mixture was concentrated to dryness, taken up in CHCl₃, and chromatographed on silica gel (10 g). Elution with CHCl₃-acetone (4:1) afforded a yellow oil (39 mg); TLC Rf 0.4 [CHCl₃-acetone (1:1)]. I: vapor; UV (EtOH) max 266 nm: IR (CHCl₃) 3460 and 3430 (amide NH), 1795 (γ-lactone), 1735 (ester CO). 1690 (amide C=O). 1690 (amide C=O). 1400 cm⁻¹ (amide II C=O); NMR (CDCl₃) 6·02-6·01 (2H each, two s, Ac). 2·53 and 3·00 (1H each, two m, O—CH—CH—CH—CO), 4·51 (1H, m, CH₂-CH-NHAc), 4·73 (1H, s, CH=O), 5·93 (1H, s, CH=O). 7·20 (1H, d, J = 17 Hz, CH=NHAc). 8·78 (1H, d, J = 11 Hz, CH=NHAc).

Pinannatine (2). Silica gel column fractions 36-56 (see Extraction and preliminary fractionation) were combined, concentrated, and redissolved in a small volume of CHCl₃. The mixture was worked up in the usual manner and chromatographed on silica gel (3 g). Elution with CHCl₃ gave 9 as a colorless oil (292 mg): IR (CHCl₃) 3465 and 3420 (amide NH). 1795 (γ-lactone), 1685 (amide C=O). 1495 cm⁻¹ (amide II C=O).

Acetylation of oxypinnatine (6). A solution of 6 (42 mg) in EtOH (8 ml) was hydrogenated with 10% Pd/C catalyst (42 mg) at atmospheric pressure. Absorption of H₂ ceased within 15 min. and 1·75 mol equivs were consumed. The catalyst and solvent were removed, and the product was recrystallized several times from acetone-hexane to give 8: m.p. 211-214°C; IR (CHCl₃) 3465 and 3420 (amide NH), 1795 (γ-lactone). 1685 (amide C=O). 1495 cm⁻¹ (amide II C=O). 2-Methyl-1,4-butanediol diacetate (9). A soln of NaBH₃ (380 mg) in H₂O (5 ml) was added dropwise to α-methyl-γ-butyrolactone (1·0 g) in H₂O (10 ml). The mixture was stirred at room temp for 1 hr. cooled. acidified to pH 1 with 2N H₂SO₄, and washed with CHCl₃. The aqueous phase was saturated with NaCl and extracted with EtOAc. Chromatography of the dried (Na₂SO₄) concentrated extract on silica gel (25 g) [CHCl₃-acetone (7:3) eluent] gave the diol as a colorless oil (292 mg): IR (CHCl₃) 3605 and 3415 cm⁻¹ (OH). A soln of the diol (42 mg) in Ac₂O-pyridine (2 ml each) was kept at room temp overnight. The mixture was worked up in the usual manner and chromatographed on silica gel (3 g). Elution with CHCl₃ gave 9 as a colorless oil (39 mg): IR (CHCl₃) 1730 cm⁻¹ (ester C=O). NMR (CDCl₃) δ 0·96 (3H, d, J = 6·5 Hz, CH₃—O—CO), 2·01 and 2·02 (3H each, two s, Ac). 3·92 (2H, d, J = 6 Hz, CH₂—CH₂—CO). 4·11 (2H, t, J = 6·5 Hz, AcO—CH₂—CH₂): MS m/e (%) 189 (M⁺ + 1: 1). 115(10). 100(19). 98(12). 86(15). 85(42). 73(16). 72(15). 69(18). 68(100). 67(10). 61(14). 56(51). 55(21).

2-Methyl-1,1-d₁-1,4-butanediol diacetate (10). Reduction of the lactone with NaBD₄ was carried out as described above except the mixture was stirred for 3 hr. Chromatography of the EtOAc extract afforded the deuterated diol: IR (CHCl₃) 3620 and 3415 (OH). 2185 and 2085 cm⁻¹ (C—D). Acetylation of the diol (100 mg) gave 10 (98 mg); IR (CHCl₃) 1730 cm⁻¹; MS m/e (%) 191 (M⁺ + 1: 1). 115(7). 103(8). 101(12). 98(7). 88(5). 87(17). 86(23). 75(9). 73(5). 72(12). 71(12). 70(100). 69(13). 61(12). 58(11). 56(42). 55(15).

Degradation of 6 to 2-methyl-1-d₁-1,4-butanediol diacetate (11). Acetylated 2 (183 mg) was hydrogenated as described above to give the crude hydrogenolysis product (160 mg) which was used in the next step without further purification. A soln of this material in 2N H₂SO₄ (4 ml) was heated on a steam bath for 2 hr. The hydrolysis mixture was cooled, and the pH was adjusted to 6·0 with Na₂CO₃ (500 mg). A soln of NaBD₄ (100 mg) in H₂O was added, and the mixture was stirred at room temp for 1 hr. Additional NaBD₄ (50 mg) was added, and stirring was continued for 2 hr. The soln was cooled. acidified to pH 1 with 10N H₂SO₄, saturated with NaCl and extracted with EtOAc. The extract was dried (Na₂SO₄). concentrated, taken up in CHCl₃ filtered, and reconcentrated.
Acetylation of the CHCl₃ solubles was followed by chromatography on silica gel (3:3 g). Elution with CHCl₃ gave 11 (11 mg) which exhibited a single spot on TLC [CHCl₃-acetone (1:1). I₂ vapor] corresponding to 9: IR (CHCl₃) 1735 cm⁻¹. NMR (CDCl₃) δ 0.95 (3H, d, J = 6.5 Hz), 2.02 (3 H, s), 2.03 (3 H, s), 3.91 (1 H, brd, J = 6 Hz). GLC-MS of the center of the major peak eluted at 92° showed m/e (%) 190 (M⁺ + 1: 1), 115(7), 103(6), 101(9), 100(7), 98(6), 87(8), 86(30), 85(13), 74(12), 73(6), 72(13), 70(18), 69(100), 68(11), 61(13), 57(14), 56(40), 55(16).

Detection of pinnatanine (1) and oxypinnatanine (2) in Hemerocallis fulva. Defatted seed meal (7 g) from H. fulva was extracted as for S. pinnata and the water-soluble portion applied to a 5 x 100 cm column of Sephadex G-10. The column was eluted with H₂O at a flow rate of 75 ml/hr. and 25-ml fractions were collected. Fractions 40-43 contained 1 as the sole ninhydrin reactive compound as shown by paper chromatography [n-BuOH-EtOH-H₂O (4:1:4)] and NMR. Fractions 33-35 were combined, concentrated, and applied to a column of AG 1-X4 anion exchange resin (acetate form). Ninhydrin-positive fractions eluted with H₂O (50 ml) were combined decolorized, and crystallized from EtOH to give 2.

Acknowledgments—We thank M. V. Wakeman for technical assistance. C. H. VanEtten for his initial discovery of pinnatanine and encouragement to undertake this work. C. E. McGrew and associates for elemental analyses. and R. Kleiman and G. F. Spencer for MS and GLC-MS determinations.

REFERENCES