Analysis of host preference and geographical distribution of *Anastrepha suspensa* (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data

L.M. Boykin¹, R.G. Shatters, Jr¹, *, D.G. Hall¹, R.E. Burns² and R.A. Franqui³

¹US Horticultural Research Laboratory, Subtropical Insects Unit, 2001 South Rock Road, Fort Pierce, Florida 34945, USA; ²Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 3513 South US 1, Fort Pierce, Florida 34982, USA; ³Botanical Garden South, 1193 Guyacan Street, San Juan, Puerto Rico 00926-1118

Abstract

Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with *A. suspensa* in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of *A. suspensa* from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 *A. suspensa* samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all *A. suspensa* as a monophyletic group that united all *A. suspensa* in a clade sister to a Central American group of the *A. fraterculus* paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

Keywords: *Anastrepha suspensa*, Caribbean fruit fly, *fraterculus*, genetic variation, fruit flies

Introduction

The genus *Anastrepha* Schiner (Diptera: Tephritidae) contains 18 species groups (197 described species) defined by morphology and host plant use (Aluja *et al*., 1999). Species
of *Anastrepha* are endemic to subtropical and tropical areas in the Americas (Stone, 1942; Aluja, 1994), and infest a wide variety of economically important hosts (Aluja, 1994). *Anastrepha* is a monophyletic genus based on both morphology (Norrbom et al., 1999) and 16s rRNA mitochondrial DNA sequence data (McPheron et al., 1999). Morgante et al. (1980), however, observed discrepancies between molecular data (protein electrophoresis) and morphological data used for inferring evolutionary relationships within *Anastrepha*, and most recently, molecular phylogeny using the nuclear gene period suggests *Anastrepha* is paraphyletic in placement with respect to *Toxotrypana* (a closely related genus) (Barr et al., 2005). Phylogenetic placement and systematic relationships of species within *Anastrepha* has been the focus of evolutionary biologist for decades. Several species appear to be paraphyletic including *A. fraterculus* (Wiedemann) and *A. obliqua* Macquart (Smith-Caldas et al., 2001), while relationships of *A. suspensa* (Loew) have not been investigated and current placement of *A. suspensa* within *Anastrepha* is based on a small number of individuals.

Anastrepha suspensa, the Caribbean fruit fly, is an economically important pest of many tropical and subtropical fruits of Florida and the Greater Antilles. This species is a member of the *fraterculus* species group, which includes 29 species (Steck, 1991; McPheron et al., 1999; Norrbom et al., 1999; Smith-Caldas et al., 2001; Barr et al., 2005) and this species group infests a diverse group of hosts, some of which are economically important (Aluja, 1994; Norrbom et al., 1999). The *fraterculus* species group is monophyletic based on both molecular (McPheron et al., 1999; Norrbom et al., 1999; Smith-Caldas et al., 2001; Barr et al., 2005) and this species group nests a diverse group of hosts, some of which are economically important (Aluja, 1994; Norrbom et al., 1999). The *fraterculus* species group is monophyletic based on both molecular (McPheron et al., 1999; Norrbom et al., 1999; Smith-Caldas et al., 2001; Barr et al., 2005) and this species group infests a diverse group of hosts, some of which are economically important (Aluja, 1994; Norrbom et al., 1999). Several studies have focused on evolutionary relationships within the *fraterculus* species group (Steck, 1991; Smith-Caldas et al., 2001) due to the economic importance of this species in South America. The most recent phylogenetic analyses of *A. fraterculus* (the species for which the *fraterculus* species group is named) were based on COI sequence data from the mitochondrial genome and revealed it is a paraphyletic species and thus is considered a species complex (Smith-Caldas et al., 2001). Polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) of mitochondrial DNA (Steck & Sheppard, 1980) and protocar electrophoresis (Morgante et al., 1980; Steck, 1991) data show high levels of diversity within *A. fraterculus*. A consistent finding for all studies involving *Anastrepha* phylogenetics is members of the *fraterculus* species complex are most closely related to *A. suspensa* (Barr et al., 2005; McPheron et al., 1999; Smith-Caldas et al., 2001), not *A. ludens* (Loew) as previously reported (Weems, 1965; Weems et al., 2001).

Questions concerning population differentiation due to host plant preferences and other factors, such as multiple introductions, have been raised. For example, Weems (1965) speculated that a large outbreak of *A. suspensa* in south Florida during 1965 was comprised of flies with population dynamics and host plants more similar to those of a Puerto Rican strain of *A. suspensa* than to those of a population of *A. suspensa* that once occurred in the Florida Keys. The native population of *A. suspensa* apparently died out some time after 1936, not a single specimen was collected anywhere in Florida in the field after 1936 until 1956 (Weems, 1965). The 1965 outbreak was thus thought to be a new introduction of *A. suspensa* from Puerto Rico (Weems, 1965). This conclusion was based on field host experiments where *A. suspensa* was infesting mangoes and in one case a sour orange, which was similar to flies in Puerto Rico. Whether that introduction was the parent source for all *A. suspensa* populations currently found in Florida or if additional introductions from Puerto Rico or other Caribbean areas have occurred is not known. No host shifts have been noted in the literature for Florida populations of *A. suspensa*, but changes in plant diversity due to urbanization and agricultural practices may have led, or could lead, to new strains.

Genetic studies have proven to be very useful in determining the genetic differences between populations of *A. suspensa*. For example, Schnell et al. (1996) showed the utility of random amplified polymorphic DNA markers in identifying highly inbred colonies of *A. suspensa* and Heath et al. (2002) generated a mitochondrial DNA restriction map that was found to be polymorphic among individuals in highly inbred colonies and a feral population.

Mitochondrial DNA sequence data from the 3-prime COI region have proven useful for phylogenetic studies of Tephritidae (Han & McPheron, 1999), specifically Rhagoletis pomonella (Walsh) (Feder et al., 2003), Bactrocera dorsalis (Hendel) (Shi et al., 2005) and also for distinguishing species within the complexes of Bactrocera tau (Walker) (Jamnongluk et al., 2003) and *A. fraterculus* (the sister group to *A. suspensa*) (Smith-Caldas et al., 2001). Therefore, COI was chosen for this investigation into the genetic diversity of *A. suspensa* in Florida and parts of the Caribbean that may have arisen through host shifts or geographic expansion. Current molecular phylogenetic work on *A. suspensa* COI sequence variation is very limited in sample size and sample collection location (Smith-Caldas et al., 2001). The purpose of the present study was to determine if there was any relationship between *A. suspensa* collected from a variety of hosts and geographical locations throughout its current distribution in Florida and the Caribbean. Specimens collected in Florida during 1935 and 1965 and in Puerto Rico and other Caribbean areas during 2004 and 2005 were included in the analyses.

Materials and methods

Outgroup determination

To determine the phylogenetic placement of *A. suspensa* within the *A. fraterculus* group an alignment of COI sequence data including 12 species within the group and two species (*A. striata* Schiner and *A. serpentina* (Wiedemann)) outside the *fraterculus* group was generated. This alignment consisted of all sequences used in Smith-Caldas (2001) GenBank (accession numbers: AF420611–AF420655) and all samples listed in table 1. A phylogenetic analysis of the data set followed the procedures listed below in the phylogenetic analyses section.

*Selection and collection of *A. suspensa* populations*

All flies were reared from fruit of the specified host plants unless otherwise noted in table 1. *Anastrepha suspensa* museum specimens from 1935 and 1965 were provided by Dr Gary Steck (Florida State Collection of Arthropods, Gainesville, Florida). In collaboration with the Florida Department of Agriculture and Consumer Services, Division of Plant Industry, and their insect monitoring programme, *A. suspensa* was obtained from various populations in central...
Table 1. Collections of *Anastrepha* species used in generating fig. 1.

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Host (common name)</th>
<th>Population number</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Eugenia uniflora L.</td>
<td>Surinam cherry 1</td>
<td>AY944901, AY944905</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Eugenia uniflora L.</td>
<td>Surinam cherry 2</td>
<td>AY944942</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Fort Pierce, FL</td>
<td>Citrus × paradisi Macfad. (pro sp.)</td>
<td>Pink grapefruit 3</td>
<td>AY944898, AY944939</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Psidium guajava L.</td>
<td>Guava 4</td>
<td>AY945004, AY944997, AY944981, AY944979</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Eriobotrya japonica (Thunb.) Lindl.</td>
<td>Loquat 5</td>
<td>AY944994, AY944995, AY944951, AY944945, AY944961, AY944967, AY944932, AY944936, AY944960</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Eriobotrya japonica (Thunb.) Lindl.</td>
<td>Loquat 6</td>
<td>AY944920</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami, FL</td>
<td>Eugenia uniflora L.</td>
<td>Surinam cherry 7</td>
<td>AY945003, AY944943, AY944955, AY944938, AY944929, AY944975, AY944966</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Fort Pierce, FL</td>
<td>Citrus reticulata Blanco × Citrus sinensis L.</td>
<td>Murccott 8</td>
<td>AY944978, AY944908</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Fort Pierce, FL</td>
<td>Citrus paradisi Macfad.</td>
<td>Grapefruit 9</td>
<td>AY944946, AY944974, AY944980, AY944953, AY944959, AY944947, AY944973, AY944931, AY944925</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami, FL</td>
<td>Psidium cattleianum Sabine</td>
<td>Guava 10</td>
<td>AY944937, AY944999, AY944954, AY944923, AY944924</td>
</tr>
<tr>
<td>A. obliqua</td>
<td>Jamaica</td>
<td>Mangifera indica L.</td>
<td>Mango 11</td>
<td>AY945061, AY945063, AY945057, AY945055</td>
</tr>
<tr>
<td>Species</td>
<td>Location</td>
<td>Host (common name)</td>
<td>Population number</td>
<td>Accession number</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>A. obliqua (Cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Vero Beach, FL</td>
<td>Severinia buxifolia (Poir.) Ten.</td>
<td>Box-orange</td>
<td>12</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami, FL</td>
<td>Manilkara zapota (L.) P. Royen</td>
<td>Sapodilla</td>
<td>13</td>
</tr>
<tr>
<td>A. ludens</td>
<td>USDA, Mission, TX</td>
<td>Laboratory colony</td>
<td>Laboratory colony</td>
<td>14</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Fort Pierce, FL</td>
<td>Psidium cattleianum Sabine</td>
<td>Guava</td>
<td>15</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Jamaica</td>
<td>Mangifera indica L.</td>
<td>Mango</td>
<td>16</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Cayman Islands</td>
<td>Swietenia mahagoni Jacq.</td>
<td>Mahogany</td>
<td>17</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Stuart, FL</td>
<td>Eugenia uniflora L.</td>
<td>Surinam cherry</td>
<td>18</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Fort Pierce, FL</td>
<td>Psidium cattleianum Sabine</td>
<td>Guava</td>
<td>19</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Dominican Republic</td>
<td>Unknown</td>
<td>Unknown</td>
<td>20</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami, FL</td>
<td>Terminalia catappa L.</td>
<td>Tropical almond</td>
<td>21</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Puerto Rico</td>
<td>Psidium guajava L.</td>
<td>Guava</td>
<td>22</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami Springs, FL</td>
<td>1965</td>
<td>Mango (McPahil)</td>
<td>24</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Miami Springs, FL</td>
<td>1965</td>
<td>Guava (McPahil)</td>
<td>25</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Key West, FL</td>
<td>1935</td>
<td>Unknown</td>
<td>32</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>St Lucie, FL</td>
<td>Unknown</td>
<td>Unknown</td>
<td>37</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Naples, FL</td>
<td>× Citrofortunella mitis J. Ingram & H.E. Moore</td>
<td>Calamondin</td>
<td>42</td>
</tr>
</tbody>
</table>
and southern Florida during 2004 and 2005. The presence of populations was determined by occurrence of *A. suspensa* in McPhail traps (Riherd & Jenkins, 1996). When flies were observed in traps, fruit from host plants in the vicinity of the traps were collected and stored in screen-enclosed buckets containing either vermiculite or sand. Flies that emerged (on average after three weeks) and confirmed as *A. suspensa* were then placed directly into 95% ethanol and stored at −20°C for further processing. Collaborators provided ethanol-preserved specimens from Florida, Puerto Rico, Jamaica, Cayman Islands and Dominican Republic. Dr Gary Steck (Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida) confirmed species identification of all specimens. *Anastrepha fraterculus* sequences most closely related to *A. suspensa* as determined by Smith-Caldas et al. (2001) were included as the outgroup.

Table 1. Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Host</th>
<th>Host (common name)</th>
<th>Population number</th>
<th>Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. obliqua</td>
<td>Puerto Rico</td>
<td>Spondias lutea L.</td>
<td>Jobo</td>
<td>43</td>
<td>AY945068</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AY945060</td>
</tr>
<tr>
<td>A. suspensa</td>
<td>Puerto Rico</td>
<td>Psidium guajava L.</td>
<td>Guava</td>
<td>44</td>
<td>AY944972</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AY945000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AY944948</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AY944940</td>
</tr>
</tbody>
</table>

Population number corresponds to the first number listed after the species name in the phylogeny (figs 2 and 3). No two populations were found at the same site, for example, populations 1 and 2 are both from Surinam cherry in Vero Beach, Florida but were found at different locations in Vero Beach, Florida.

DNA extraction, amplification and sequencing

Total DNA was extracted from individual flies using one of two methods: (i) BioRad AquaPure Genomic DNA Kit (732-6340) following the standard procedure ‘A’ protocol for extraction of DNA from tissue; or (ii) Cartagen’s (www.cartagen.com) rapid homogenization for plant leaf DNA amplification (catalogue no. 20700-500, lot no. 08180400134). The DNA was amplified using COI primers C1-J-2183 (5’ CAACATTTATTTTGATTTTTTG 3’) and TL2-N-3014 (5’ TCCAATGGACTAATCTGCCATATT 3’) (Simon et al., 1994). The 30 μl PCR reactions used a thermal regime of 94°C for 2 min followed by 35 cycles of 30 s at 94°C, 30 s at 53°C, 1 min at 72°C, and 10 min at 72°C in a MJ Research PTC-200 Peltier thermal cycler. PCR products were cleaned prior to sequencing using montage PCR filter units (Millipore catalogue no. UFC7PCR50). Bidirectional sequencing was performed using the PCR primers and BigDye® Terminator Cycle Sequencing Kit Version 3.1. Sequence product analysis was conducted on an Applied Biosystems 3730xl DNA Analyser. Sequence fragments were assembled with Sequencher® version 4.2 (Gene Codes Corporation, 2004) and aligned using ClustalX (Thompson et al., 1997). Minor alignment issues were corrected using Se-Al (Rambaut, 2000).

Phylogenetic analyses

Molecular data were evaluated using maximum likelihood (ML) and Bayesian methods. ML analyses were performed using PAUP* (Swofford, 2003) and Bayesian analyses using MrBayes version 3.0b4 (Huelsenbeck & Ronquist, 2003). Prior to likelihood or Bayesian analysis the best-fit model of evolution was determined using Modestest 3.6 (Posada & Crandall, 1998). For a review of models of molecular evolution see Swofford et al. (1996).

All populations listed in table 1 were included in the phylogenetic analyses. Heuristic searches with ten random addition sequence replicates and tree-bisection-reconstruction (TBR) branch swapping were performed for all ML estimates. ML estimates of the COI phylogeny were obtained using the Hasegawa Kishino Yano (HKY) model of molecular evolution (variable base frequencies, variable transition and transversion frequencies) with invariable (I) sites and gamma (G) distributed site-to-site variation (G) — HKY + I + G. (Felsenstein, 1981; Hasegawa et al., 1985; Swofford et al., 1996).

ML bootstrap analyses of 100 replicates were performed using a heuristic search with ten random addition sequence replicates and TBR branch swapping. A Bayesian approach was also used to assess branch support because of its easy interpretation of results, its ability to incorporate prior information (uniform in our case) (Huelsenbeck & Ronquist, 2001) and some computational advantages (Larget & Simon, 1999). MrBayes (Huelsenbeck & Ronquist, 2001) employs Markov Chain Monte Carlo (MCMC) to approximate the posterior probabilities of phylogenies (Metropolis et al., 1953; Hastings, 1970; Green, 1995). The model of evolution used for Bayesian analyses of COI data was HKY + I + G (determined by ModelTest 3.6). MrBayes was run with four chains from ten different starting points. All runs were done for 1 million generations and trees were sampled every 100 generations. All runs reached a plateau in likelihood score, which indicated the Markov-Chain Monte Carlo (MCMC) chains converged. To determine the number of trees to discard due to the burn-in phase, tree likelihood versus number of generations was plotted; trees recovered before the run reached stationarity were discarded. All trees saved from all ten runs were summarized in PAUP* (see MrBayes manual) and the posterior probabilities were recorded on the maximum likelihood tree.

Genetic identification of A. suspensa

MacClade 4.0 (Maddison & Maddison, 2000) was used to identify positions in the 806 base pair alignment that were unique to *A. suspensa* (synapomorphic character). The
Fig. 1. Phylogram of the maximum likelihood tree generated using COI data and the GTR + G model of molecular evolution ($-\ln = -3723.37$, gamma shape = 0.2281) for all included Anastrepha species. A Bayesian analysis was run under the GTR + G model for 1 million generations and 8000 trees were used to assess the posterior probabilities of the nodes (2000 trees discarded due to burn-in).
The ML estimate of the gamma shape parameter was 0.7106. The transition to transversion ratio was 0.6463 and the proportion of invariable sites was 0.5410. G = 0.1634, T = 0.3488. The transition to transversion ratio parameter is 0.2281.

Empirical base frequencies were: A = 0.3173, C = 0.1663, G = 0.1452, T = 0.3712 and the ML estimate of the gamma shape parameter is 0.2281.

Constraint tree analyses

Monophyly of A. suspensa from citrus, the Caribbean, and Miami, Florida populations was tested using constraint tree analysis. For example, to test the monophyly of A. suspensa from citrus, all A. suspensa samples from citrus (populations 3, 8, 9 and 12, table 1) were constrained to a monophyletic group and an ML search was conducted under a HKY + I + G model of molecular evolution (determined by Modeltest). The Kishino-Hasagawa (1989) and the Shimodaira-Hasagawa (1999) tests were used to determine if the ML tree with no constraint was significantly different than the tree generated with the constraint enforced. Both the Kishino-Hasagawa and the Shimodaira-Hasagawa settings were set to full-optimization with 1000 bootstrap replicates. All analyses were performed using PAUP*.

Results

Molecular data

The dataset that contained all species of the A. fraterculus group was 806 base pairs long with no invariable sites. The model of molecular evolution was the general time reversible model (GTR) + G (gamma distributed site-to-site variation). Uncorrected P distances among species of the A. fraterculus group ranged from 0.00 to 0.10. Empirical base frequencies were: A = 0.3173, C = 0.1663, G = 0.1452, T = 0.3712 and the ML estimate of the gamma shape parameter is 0.2281.

A second data set contained 107 specimens of Anastrepha suspensa and two specimens A. fraterculus from Costa Rica and Mexico. Gaps in the alignment were treated as missing data. There were 303 variable sites out of the 806 base pairs; 0.01% of the matrix was treated as missing. Uncorrected P distances among A. suspensa ranged from 0.00 to 0.14. Empirical base frequencies were A = 0.3150, C = 0.1727, G = 0.1634, T = 0.3488. The transition to transversion ratio was 0.6463 and the proportion of invariable sites was 0.5410. The ML estimate of the gamma shape parameter was 0.7106.

Phylogenetic analyses

The most recent phylogeny of the A. fraterculus group is shown in fig. 1. The relationships recovered are similar to that shown in Smith-Caldas et al. (2001). With the addition of more specimens of A. suspensa, A. obliqua, and A. ludens through this study, the node support values have increased throughout the tree. The placement of two species, A. acriis (Stone) and A. coronili (Carrejo & Gonzalez) remains unknown. Our samples of A. ludens group with the Smith-Caldas et al. (2001) specimen with high node support at the base of the phylogenetic tree. Anastrepha obliqua is still a paraphyletic species with our specimens from Jamaica and Puerto Rico grouping with one of the two clades that contained A. obliqua in Smith-Caldas et al. (2001). The sister group relationship of A. suspensa with two collections of A. fraterculus from Costa Rica and Mexico as originally described by Smith-Caldas et al. (2001) was supported with high posterior probability and ML bootstrap values (100/70) for all 107 A. suspensa samples.

Importantly, although A. fraterculus remained paraphyletic (see Smith-Caldas et al., 2001 for discussion) all collections of A. suspensa were monophyletic (figs 1–3) with both maximum likelihood bootstrap (99) and Bayesian posterior probability (1.00) support. Position 492 was identified as the only synapomorphic character in comparison of A. suspensa and the closely related A. fraterculus species (data not shown); all 107 A. suspensa have a cytosine (C) while all A. fraterculus (the sister group) has a thymine (T). The Bayesian analyses provided more clade support, 20 versus 4 ML bootstrap nodes (fig. 2). The backbone of the most likely phylogenetic tree (fig. 2) was not well supported with either maximum likelihood bootstrap values or Bayesian posterior probabilities. There are several groups at the tips of the tree that are well supported, for example, A. suspensa 20.5 (from Puerto Rico) and A. suspensa 3.5 (from Fort Pierce, Florida) form a monophyletic group with 100/1.00 ML bootstrap and Bayesian posterior probability (fig. 2). The short branch lengths (fig. 3) indicate very few base pair differences between the samples of A. suspensa included in the analyses (table 1). Anastrepha suspensa samples that were included from 1935 (A. suspensa 32.1) and 1965 (A. suspensa 24.1 and A. suspensa 25.1) did not form a monophyletic group (figs 2 and 3). The 1935 sample was placed in a clade with flies collected in Miami reared from Psidium cattleianum Sabine, guava (A. suspensa 10.5) and Eugenia uniflora L., Surinam cherry (A. suspensa 7.5). However, there was no ML bootstrap or Bayesian posterior probability support for the placement of the 1935 fly. One of the 1965 flies (A. suspensa 24.1) was found towards the root of the tree, while the other fly from 1965 was placed in a clade with a fly from Vero Beach (A. suspensa 1.10) and Miami (A. suspensa 21.6). In the latter case, there was minimal (0.65) Bayesian posterior probability support for the group.

There were no monophyletic groups defined in fig. 2 based on geography, population, or host-plant use. For example, all the flies from Fort Pierce, Vero Beach and Miami, Florida were found throughout the phylogeny (figs 2 and 3). Caribbean samples were also found scattered throughout the phylogeny. Individuals in single populations did not form a monophyletic group, for example, population 22 consisted of flies isolated from a single population of guava from Puerto Rico and individuals from this population were found throughout the phylogeny (figs 2 and 3). There were three populations of flies reared from fruit in the citrus family (Rutaceae), and none of them grouped together.

Constraint tree analyses

Results from the Kishino-Hasagawa (KH) and Shimodaira-Hasagawa (SH) tests (Kishino & Hasegawa, 1989;...
Fig. 2. For caption see opposite page.
Phylogeny of *Anastrepha suspensa* 465

Shimodaira & Hasegawa, 1999) showed significant difference between trees that contained *A. suspensa* from citrus, the Caribbean, and Miami, Florida each forced to be separate monophyletic groups (table 2). The differences between the most likely tree (fig. 2) and the constraint trees ranged from -1318.66511 (Caribbean) to -1337.71996 (citrus). This difference was great enough to require rejection of the hypothesis that variation in COI sequence data could be used to show population differences related to host preference or geographical location of *A. suspensa*.

Discussion

DNA sequences from the COI region showed *A. suspensa* is monophyletic, unlike its sister taxa, *A. fraterculus* (figs 1–3; Smith-Calda et al., 2001). This is the first comparison of COI sequence data from *A. suspensa* taken throughout its geographic range, and this broad comparison offers support to the phylogenetic placement of *A. suspensa* that was previously determined from a single population sample (Smith-Calda et al., 2001).

The maintenance of the monophyletic nature of *A. suspensa* populations, compared to some other tephritid species, could be supported by differences in habitat, behaviour and/or the time required for lineage sorting. Firstly, there were no geographic patterns observed in our phylogeny for *A. suspensa* generated using COI sequence data. Samples from the Caribbean (population 16–Jamaica, population 17–Cayman Islands, populations 20 and 44–Puerto Rico) did not form separate monophyletic groups. There were no ML bootstrap or Bayesian probabilities to support the lack of geographic patterns, but the constraint tree analysis (table 2) illustrated that a tree with the Caribbean populations constrained to be a monophyletic group was significantly different from the best-fit tree (fig. 2). In contrast, *A. fraterculus* from South America appears geographically paraphyletic. Steck (1991), using isozyme data, and Smith-Calda et al. (2001), using COI DNA sequence data, suggest that habitat differences found throughout its range of diverse elevational and climatic environments might explain this. Steck (1991) found two populations in close proximity in the Venezuelan lowland with very strong allelic frequency differences. These allelic differences could be explained as the result of natural selection and local adaptation of the two populations having very little to no gene flow between them because of elevational and climatic differences (Steck, 1991). These same patterns were observed in the phylogeny generated with COI data (Smith-Calda et al., 2001), where three included Andean populations formed a strongly supported, highly divergent clade at the base of their *fraterculus* species complex tree. The current distribution of *A. suspensa* does not include as diverse elevational and climatic conditions as *A. fraterculus* being limited to the Greater Antilles and southern Florida. Secondly, samples of *A. suspensa* collected on the same fruit from different locations did not form monophyletic groups within the *A. suspensa* clade using COI DNA sequence data, and there was no significant ML bootstrap and Bayesian posterior probability support on the phylogeny regarding host specificity (fig. 2). Also, using the Kishino-Hasagawa (KH) and Shimodaira-Hasagawa (SH) tests (table 2), a phylogenetic tree constrained to group individuals from the same plant hosts was significantly different than the best-fit tree (fig. 2). These findings were in contrast to the results from COI data for another tephritid fruit fly, *Rhagoletis pomonella*, where *R. pomonella* collected from hawthorn and apples formed monophyletic clades respectively based on host. It was suggested that *R. pomonella* is a sibling species complex, which had diverged in sympathy by shifting (from hawthorn) and adapting to new host plants (apples) (Feder et al., 1995, 2003). Feder et al. (1995) suggest *R. pomonella* originally feeding on hawthorn escaped from predators and parasitoids when on apples, which could increase the suitability of apples as a host species. *Rhagoletis pomonella* from the United States and Mexico also formed separate monophyletic groups based on host-plant location (Feder et al., 2003).

Host availability was also an important factor when examining host-plant shifts. *Anastrepha suspensa* has different types of fruit available throughout the year, while *R. pomonella* does not. Increased fitness conferred by the ability to maintain population growth throughout the year by host shifting may prevent host preference from becoming an important population isolating factor, and therefore maintaining *A. suspensa* as a polyphagous species. In contrast, *R. pomonella* is thought to remain as a monophagous species (feeds on one host) due to a lack of suitable alternative hosts producing fruit throughout the year (Aluja et al., 1999).

Most monophagous species usually mate where the female oviposits (fruit or site of gall formation). In contrast, polyphagous species usually mate in aggregations on the foliage of host plants some distance from ovipositional sites (Burk, 1983). Maintenance of polyphagy in *A. suspensa* may therefore be due to a combination of host availability and mating system differences between *A. suspensa* and *R. pomonella*. Plant-host data was not provided in Smith-Calda et al. (2001) for *A. fraterculus*, but host information might shed some light on the phylogeny of the paraphyletic *fraterculus* species complex.

There are considerable historical biogeography differences between the current distributions of *R. pomonella* and those of *A. suspensa* and *A. fraterculus* that could also influence the evolution of these groups of insects. It is hypothesized that an ancestral hawthorn-infesting *R. pomonella* population became divided into Mexican and North American populations approximately 1.57 million years ago (Feder et al., 2003) and has since shifted hosts to infest apple. The phylogenetic relationships among apparently isolated populations of *A. suspensa* may therefore not be reflected in the COI sequence variation because there has been less time for *A. suspensa* in Florida to accumulate genetic changes (1 mya- (Webb, 1990)).

Fig. 2. Cladogram of the maximum likelihood tree generated using COI data and the HKY + I + G model of evolution (−ln = −4805.198, ti/tv = 0.6463) for *Anastrepha suspensa* populations. A Bayesian analysis was run under the HKY + I + G model for 1 million generations and 7000 used to assess the posterior probabilities of the nodes trees (3000 were discarded due to burn-in). Numbers above the nodes are monophyletic groups within the *A. suspensa* clade using COI DNA sequence data, and there was no significant ML bootstrap and Bayesian posterior probability support on the phylogeny regarding host specificity (fig. 2). Also, using the Kishino-Hasagawa (KH) and Shimodaira-Hasagawa (SH) tests (table 2), a phylogenetic tree constrained to group individuals from the same plant hosts was significantly different than the best-fit tree (fig. 2). These findings were in contrast to the results from COI data for another tephritid fruit fly, *Rhagoletis pomonella*, where *R. pomonella* collected from hawthorn and apples formed monophyletic clades respectively based on host. It was suggested that *R. pomonella* is a sibling species complex, which had diverged in sympathy by shifting (from hawthorn) and adapting to new host plants (apples) (Feder et al., 1995, 2003). Feder et al. (1995) suggest *R. pomonella* originally feeding on hawthorn escaped from predators and parasitoids when on apples, which could increase the suitability of apples as a host species. *Rhagoletis pomonella* from the United States and Mexico also formed separate monophyletic groups based on host-plant location (Feder et al., 2003).

Host availability was also an important factor when examining host-plant shifts. *Anastrepha suspensa* has different types of fruit available throughout the year, while *R. pomonella* does not. Increased fitness conferred by the ability to maintain population growth throughout the year by host shifting may prevent host preference from becoming an important population isolating factor, and therefore maintaining *A. suspensa* as a polyphagous species. In contrast, *R. pomonella* is thought to remain as a monophagous species (feeds on one host) due to a lack of suitable alternative hosts producing fruit throughout the year (Aluja et al., 1999).

Most monophagous species usually mate where the female oviposits (fruit or site of gall formation). In contrast, polyphagous species usually mate in aggregations on the foliage of host plants some distance from ovipositional sites (Burk, 1983). Maintenance of polyphagy in *A. suspensa* may therefore be due to a combination of host availability and mating system differences between *A. suspensa* and *R. pomonella*. Plant-host data was not provided in Smith-Calda et al. (2001) for *A. fraterculus*, but host information might shed some light on the phylogeny of the paraphyletic *fraterculus* species complex.

There are considerable historical biogeography differences between the current distributions of *R. pomonella* and those of *A. suspensa* and *A. fraterculus* that could also influence the evolution of these groups of insects. It is hypothesized that an ancestral hawthorn-infesting *R. pomonella* population became divided into Mexican and North American populations approximately 1.57 million years ago (Feder et al., 2003) and has since shifted hosts to infest apple. The phylogenetic relationships among apparently isolated populations of *A. suspensa* may therefore not be reflected in the COI sequence variation because there has been less time for *A. suspensa* in Florida to accumulate genetic changes (1 mya- (Webb, 1990)).
Fig. 3. For caption see opposite page.
Table 2. Topology test statistics for constraint tree analyses.

<table>
<thead>
<tr>
<th>Constraint test</th>
<th>LN</th>
<th>Difference</th>
<th>KH-test P-value</th>
<th>SH-test P-value</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus Tree1</td>
<td>-4805.19809</td>
<td>Best</td>
<td>0.000</td>
<td>0.000</td>
<td>Yes</td>
</tr>
<tr>
<td>Tree2a</td>
<td>-6142.91804</td>
<td>1337.71996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caribbean Tree1</td>
<td>-4805.19809</td>
<td>Best</td>
<td>0.000</td>
<td>0.000</td>
<td>Yes</td>
</tr>
<tr>
<td>Tree2b</td>
<td>-6123.86360</td>
<td>1318.665511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami Tree1</td>
<td>-4805.19809</td>
<td>Best</td>
<td>0.000</td>
<td>0.000</td>
<td>Yes</td>
</tr>
<tr>
<td>Tree2c</td>
<td>-6139.88043</td>
<td>1334.68234</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KH, Kishino-Hasegawa, SH, Shimodaira-Hasegawa (Kishino & Hasegawa, 1989; Shimodaira & Hasegawa, 1999). Tree 1 is the ML tree generated using PAUP*. Tree 2b contained all flies reared from citrus constrained to a monophyletic group. Tree 2b had all flies collected from the Caribbean constrained to a monophyletic group. Tree 2c consisted of all flies from Miami constrained to a monophyletic group.

When the influence of both host plant and geographical location were considered together by comparisons of single populations (for example, samples collected from population 1, flies reared from Surinam cherry from Vero Beach, Florida) there were no incidences where individuals from discrete populations formed a monophyletic group (fig. 2). Comparisons between these data and other *Anastrepha* phylogenetic studies were not possible because multiple individuals per population were not included in previous studies (McPheron et al., 1999; Norrbom et al., 1999; Smith-Caldas et al., 2001; Barr et al., 2005). One possible explanation for the paraphyly of individuals in a single population might be that high variance in oviposition-resources on spatial and temporal scales might lead to discontinuous ranges and genetic divergence among populations of fruit-infesting tephritids such as *Anastrepha* spp. (Sivinski et al., 2004). It is also important to note that not all flies from a given population were collected from one single fruit, but several fruits were incubated and flies that emerged from a given geographical location were labelled a population. This may mean that flies were sampled from subpopulations within a larger population. With the COI sequence variability found in one population, for example individuals from population 1 do not form a monophyletic group (figs 2 and 3), future studies are not genetically distinct.

The results presented here have applicability beyond studying genetic diversity of *A. suspensa* in Florida and the Caribbean. The monophyly of all *A. suspensa* indicates the potential for use of such genetic markers for larval identification of *A. suspensa*. Our data in conjunction with morphological characters (Norrbom et al., 1999) and identification of other genetic markers (Schnell et al., 1996; Heath et al., 2002) that contain synapomorphic characters will undoubtedly provide valuable species-level identification tools.

Given that the inability to distinguish geographical or host preference related phylogenetic differences within *A. suspensa* may be due to incomplete lineage sorting according to COI sequence evolution, more rapidly evolving markers such as microsatellites may resolve the more recent population isolation events if they exist. We therefore plan to assess variability within *A. suspensa* at the population level by utilizing microsatellite primers designed specifically for *A. suspensa* (Fritz & Schable, 2004). Microsatellite markers have been widely used in studies involving population genetics of invasive tephritid fruit flies in Florida (Silva et al., 2003) and California (Meixner et al., 2002; Nardi et al., 2005), and similar approaches will be used to answer questions regarding population structure and differences, genetic drift, and gene flow.

Acknowledgements

The authors would like to thank Kathy Moulton, Kim Poole, Bryan Baclaski, and Phat Dang for laboratory assistance. Ken Hibbard, Gwen Myres, Michelle Sherwood, Colmar Serra, Matthew Brodie, and Andria Forrester provided *A. suspensa* from throughout Florida and the Caribbean. The authors would also like to thank David Dean, Catherine Katsar and two anonymous reviewers for providing useful suggestions on earlier drafts of the manuscript.

References

Fig. 3. Phylogram of the maximum likelihood tree generated using COI data and the HKY + I + G model of evolution (−ln = −4805.198, ti/tv = 0.6463) for *Anastrepha suspensa* populations. The first number after *A. suspensa* corresponds to the population numbers in table 1 and the second number is the individual number from a given population.

inferred from DNA sequences of mitochondrial cytochrome oxidase I. Neotropical Entomology 30, 565–573.

(Accepted 7 April 2006) © USDA 2006