Arachidonic acid synthetic pathways of the oyster protozoan parasite, Perkinsus marinus: evidence for usage of a delta-8 pathway

Fu-Lin E. Chu a,⁎, Eric D. Lund b, Ellen Harvey a, Richard Adloff b

a Virginia Institute of Marine Science, School of Marine Science, Gloucester Point, VA 23062, USA
b USDA, ARS, NCAUR, 1815 N. University, Peoria, IL 61604, USA

Received 24 June 2003; accepted 28 August 2003

Abstract

The meront stage of the oyster protozoan parasite, Perkinsus marinus, is capable of synthesizing saturated and unsaturated fatty acids including the essential fatty acid, arachidonic acid [20:4(n−6)]. Eukaryotes employ either delta-6 (Δ-6) or delta-8 (Δ-8) desaturase pathway or both to synthesize arachidonic acid. To elucidate the arachidonic acid synthetic pathways in P. marinus, meronts were incubated with deuterium-labeled precursors [18:1(n−9)-d6, 18:2(n−6)-d4, 18:3(n−3)-d4, and 20:3(n−3)-d8]. The lipids were extracted, converted to fatty acid methyl esters, and analyzed using gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Deuterium-labeled 18:2(n−6), 20:2(n−6), 20:3(n−6), and 20:4(n−6) were detected in meront lipids after 1-, 3-, 5-, and 10-day incubation with 18:1(n−9)-d6. Deuterium-labeled 20:2(n−6), 20:3(n−6) and 20:4(n−6) were found in lipids from meronts after incubation with 18:2(n−6)-d4 methyl ester. No labeled 18:3(n−6) was detected in either incubation. Apparently, when incubated with 18:1(n−9)-d6, the parasite first desaturated 18:1(n−9)-d6 to 18:2(n−6)-d6 by a Δ-12 desaturase, then to 20:2(n−6)-d6 by elongation, and ultimately desaturated to 20:3(n−6)-d6 and 20:4(n−6)-d6 using the sequential Δ-9 and Δ-5 desaturation. Similarly, when incubated with 18:2(n−6)-d4, P. marinus converted the 18:2(n−6)-d4 to 20:2(n−6)-d4 by elongation and 20:2(n−6)-d4 to 20:3(n−6)-d4 by Δ-5 desaturase then by Δ-9 desaturase to 20:4(n−6)-d4. These results provide evidence that P. marinus employed the Δ-8 rather than Δ-6 pathway for arachidonic acid synthesis. Additional support for the presence of a Δ-8 pathway was the demonstrated ability of the parasite to metabolize 18:3(n−3)-d4 to 20:3(n−3)-d4 and 20:4(n−3)-d4, and 20:3(n−3)-d8 to 20:4(n−3)-d6 and 20:5(n−3)-d6 using the sequential position-specific Δ-8 and Δ-5 desaturases.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Arachidonic acid, Desaturases, Fatty acid synthetic pathways, Oyster, Oyster parasite, Perkinsus marinus

1. Introduction

Although parasitic protozoans effectively incorporate lipids from culture media and/or host and convert them to constitutive lipids [1–4], their ability for chain elongation and desaturation of fatty acids are limited [1,5–8]. Only three parasitic protozoans, Trypanosoma cruzi, Plasmodium falciparum, and Leishmania donovani, have been shown to synthesize fatty acids from 14C-acetate [9–11]. In these studies, no saturated fatty acid with chain length more than 18 carbons and unsaturated fatty acids other than 18:1 and 18:2 were found to incorporate 14C from labeled acetate. However, results of our recent study [12] revealed that the fatty acid synthetic capability of the oyster protozoan parasite, Perkinsus marinus, is far beyond those described for T. cruzi, P. falciparum, and L. donovani. The in vitro cultured meronts of P. marinus synthesized a wide range of saturated and unsaturated fatty acids including the essential fatty acid, arachidonic acid [20:4(n−6), AA], employing 14C-acetate [12].

Perkinsus marinus is an alveolate in the class Perkinso-
2. Materials and methods

2.1. Axenic P. marinus meront cultures

Perkinsus marinus meronts were cultured at 28 °C as previously described [12,22]. The medium was prepared as described by La Peyre et al. [23] and contained amino acids, nucleotides, carbohydrates, and vitamins, but no fetal bovine serum. The lipid concentration of this medium was 20 μg/ml, based on the amount of lipid added to the medium. Meronts were inoculated (approximately 10^6 meronts/ml) and cultivated in 10-ml aliquots of medium in T-10 tissue culture flasks at 28 °C. Meronts were cultivated at 28 °C and some phytoplankton species [21]. Conversely, employing the Δ-6 pathway for 20:4(n-6) synthesis has been described in ciliates, trypanosomatids [5] and some phytoplankton species [21]. Conversely, employing the Δ-8 pathway to synthesize 20:4(n-6) has been described in the ciliated protozoan Tetrahymena pyriformis [18]. The objective of the present study was to elucidate the 20:4(n-6) synthetic pathways (Δ-6 or Δ-8) in P. marinus meronts employing deuterium-labeled 18:1(n-9), 18:2(n-6), 18:3(n-3), and 20:3(n-3).

2.2. Deuterium-labeled fatty acids and fatty acid methyl esters

Deuterium-labeled fatty acid and fatty acid methyl esters were synthesized by Richard Adlof and his associates at USDA (ARS, NCAUR, 1815 N. University, Peoria, IL) using previously published methods [24]. Chemical purities of the synthesized fatty acids (as fatty acid methyl esters; FAME) were determined on a Varian 3400 GC (Varian Instruments, Palo Alto, CA) equipped with a 30 m × 0.25 mm Supelcowax 10 fused silica capillary column (Supelco, Inc., Bellefonte, PA). Data collection and manipulation have been described previously [25]. The isotope purities of the labeled fatty acids used in the present study were confirmed to be: 18:1(n-9)-d6 = 90.4%, 18:2(n-6)-d4 = 84%, 18:3(n-3)-d4 = 97.1%, 20:3(n-3)-d8 = 92.4%.

2.3. Experiments

A series of experiments were conducted to elucidate the arachidonic acid (AA) synthetic pathways in P. marinus meronts. To investigate whether P. marinus meronts use delta-8 (Δ-8), and/or delta-6 (Δ-6) pathways to synthesize AA, the deuterium-labeled fatty acids, 18:1(n-9)-d6 [18:1(n-9)-9,14,14,15,15,17,18-d6], 18:3(n-3)-d4 [18:3(n-3)-6,6,7,7-d4], and 20:3(n-3)-d8 [20:3(n-3)-3,3,4,4,8,8,9,9-d8], and 18:2(n-6)-d4 [18:2(n-6)-15,15,16,16-d4] methyl ester were used.

2.3.1. Uptake and metabolic kinetics of the deuterium-labeled oleic acid, 18:1(n-9)-d6, in P. marinus meronts

This experiment was conducted to determine the time course of AA biosynthesis from deuterated fatty acid precursors and to identify intermediates. Medium containing 18:1(n-9)-d6 was prepared by adding the deuterated fatty acid directly to lipid concentrate solution (GibcoBRL, #21900-030), which was then used in preparing the media (10 ml lipid concentrate/l). Medium was also prepared with a similar concentration of non-deuterated 18:1(n-9)-d6, 18:2(n-6)-d4 [18:2(n-6)-15,15,16,16-d4] methyl ester. Medium was also prepared with a similar concentration of non-deuterated 18:1(n-9)-d6, 18:2(n-6)-d4 [18:2(n-6)-15,15,16,16-d4] methyl ester. Incubations with 18:2(n-6)-d4 methyl ester and fatty acids, 18:3(n-3)-d4 and 20:3(n-3)-d8, and their non-deuterated counterparts were conducted in a similar manner to the 18:1(n-9)-d6 incubations, except that the substrates were added directly to the media from 10 mg/ml...
ethanol stock solutions to final nominal concentrations of 10 μg/ml media. For each substrate tested, three replicate 10 ml flasks of cells were harvested after 3 days to analyze for the uptake and metabolism of the substrates by P. marinus meronts.

2.4. Lipid and fatty acid analyses

Detailed methodologies for lipid extraction, and analysis of deuterium-labeled and non-labeled fatty acids have been described previously by Chu et al. [12]. Thus, only a brief description is provided here. Total lipids were extracted from meronts according to the procedure described by Bligh and Dyer [26]. Fatty acid composition and contents of meronts were first analyzed using GC/FID (Varian 3300, equipped with a FID; Varian Analytical Instruments, Sunnydale, CA) using a DB-W AX capillary column (25 m × 0.2 μm film thickness; J&W Scientific, Folsom, CA), after transmethylation [12,27]. Identification of FAMEs was based on the comparison of their retention times with those of authentic standards and confirmed by GC/MS. Peaks containing deuterated fatty acids were tentatively identified by comparison to chromatograms of cultures incubated with the same non-deuterated substrate using GC/FID and then confirmed by chemical ionization GC/MS (Varian 3400 gas chromatograph equipped with a Varian Saturn 4D GC/MS/MS detector) using the same column. Values are mean ± S.D. for total micrograms of deuterated fatty acids recovered in the cell pellets of the cultures.

2.5. Statistical analyses

Data from the 18:1(n − 9)−d6 time series incubations were subjected to analysis of variance. When appropriate, comparisons between sampling dates were conducted using Tukey’s test.

3. Results

3.1. Uptake and metabolic kinetics of the deuterium-labeled oleic acid, 18:1(n − 9)−d6, in P. marinus meronts

Perkinsus marinus meronts effectively incorporated and utilized 18:1(n − 9)−d6. Deuterium-labeled 18:2(n − 6), 20:2(n − 6), 20:3(n − 6), and 20:4(n − 6) were detected in P. marinus meronts lipids after 1-, 3-, 5-, and 10-day incubation with the substrate, 18:1(n − 9)−d6 (Fig. 1; Table 1). The chromatograms generated from GC/FID analysis demonstrated that 18:1(n − 9)−d6 and its metabolites resolved with baseline, or near baseline separation from their non-deuterated counterparts (Fig. 1). Approximately 8.7% of the 18:1(n − 9)−d6 added to the medium was recovered in the P. marinus lipids and 3.0, 1.3, 0.2, and 5.3% of the added 18:1(n − 9)−d6 was converted to 18:2(n − 6)−d6, 20:2(n − 6), 20:3(n − 6)−d6, and 20:4(n − 6)−d6, respectively, after 72-h incubation (Table 2). The deuterium-labeled arachidonic acid (AA) constituted 11% of the total AA (deuterated AA plus non-deuterated AA) in the P. marinus lipids. No 18:3(n − 6)−d6 was detected. These results indicate that in P. marinus meronts, 18:1(n − 9)−d6 was first desaturated to 18:2(n − 6)−d6 by Δ-12 desaturase, then elongated to 20:2(n − 6)−d6, and ultimately desaturated to 20:3(n − 6)−d6 and 20:4(n − 6)−d6 using, presumably, the sequential Δ-8 and Δ-5 desaturases (Table 2). The AA synthetic activity was relatively slow in the first 24 h (day 1). But, the quantity of AA increased almost three-fold by day 3 compared to day 1. No significant additional
Deuterium-labeled 20:2(n−6), 20:3(n−6), and 20:4(n−6) were found in lipids extracted from *P. marinus* meronts after incubation/cultivation with 18:2(n−6)-d4 methyl ester for 3 days (72 h) (Fig. 1; Table 2). Twelve percent of the added 18:2(n−6)-d4 methyl ester was incorporated in *P. marinus* lipids and about 4.2, 0.2, and 1.1% were metabolized to 20:2(n−6)-d4, 20:3(n−6)-d4, and 20:4(n−6)-d4, respectively. These results further provide evidence that at the meront stage, the parasite employed the Δ-8 pathway for AA synthesis: elongation of 18:2(n−6) to 20:2(n−6) and desaturation of 20:2(n−6) to 20:3(n−6) by Δ-5 desaturase then Δ-5 desaturase to make 20:4(n−6). The deuterium-labeled 20:4(n−6) accounted for 21% of the total AA pool.

Table 1	Uptake and metabolism of 18:1(n−9)-d6 by *P. marinus*			
——	———— ———— ———— ———— ————			
Total FA (μg)	Day 1	Day 3	Day 5	Day 10
18:1(n−9)-d6	9.7 ± 0.4*	5.1 ± 0.1*	5.0 ± 0.7*	4.5 ± 0.4*
18:2(n−6)-d6	1.5 ± 0.1	1.8 ± 0.1	1.7 ± 0.3	1.6 ± 0.2
20:2(n−6)-d6	0.3 ± 0.0*	0.8 ± 0.1*	0.9 ± 0.2*	0.7 ± 0.1*
20:3(n−6)-d6	Trace	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0
20:4(n−6)-d6	1.3 ± 0.1*	3.5 ± 0.2*	3.7 ± 0.8*	3.8 ± 0.6*

Deuterated substrates were added to fresh *P. marinus* media to a concentration of 10 μg/ml using 10 mg/ml EtOH stock. *P. marinus* cells from a 7-day-old culture were pelleted and resuspended in the media at a concentration of 10^6 cells/ml. Ten milliliter cultures (n = 5) were incubated at 28 °C for 1, 3, 5, and 10 days, then collected and processed for fatty acid analysis. Peaks containing deuterated fatty acids were tentatively identified by comparison to chromatograms of cultures incubated with the same non-deuterated substrate and confirmed by chemical ionization GC/MS. Values are mean ± S.D. for total micrograms of deuterated fatty acids recovered in the cell pellets of the cultures. FA: fatty acid; DW: dry weight. Different letters in superscript (a and b) denote significant differences at the P < 0.05 level.

AA synthetic activity was noted from day 3 to day 10 (Table 1).

3.2. Metabolism of the deuterium-labeled linoleic acid [18:2(n−6)-d4] methyl ester in *P. marinus* meronts

Deuterium-labeled 20:2(n−6), 20:3(n−6), and 20:4(n−6) were found in lipids extracted from *P. marinus* meronts after incubation/cultivation with 18:2(n−6)-d4 methyl ester for 3 days (72 h) (Fig. 1; Table 2). Twelve percent of the added 18:2(n−6)-d4 methyl ester was incorporated in *P. marinus* lipids and about 4.2, 0.2, and 1.1% were metabolized to 20:2(n−6)-d4, 20:3(n−6)-d4, and 20:4(n−6)-d4, respectively. These results further provide evidence that at the meront stage, the parasite employed the Δ-8 pathway for AA synthesis: elongation of 18:2(n−6) to 20:2(n−6) and desaturation of 20:2(n−6) to 20:3(n−6) by Δ-5 desaturase then Δ-5 desaturase to make 20:4(n−6). The deuterium-labeled 20:4(n−6) accounted for 21% of the total AA pool.

Table 2

Table 2	Metabolism of deuterated n−6 and n−9 fatty acids by *P. marinus*		
———	———— ———— ———— ————		
Deuterium-labeled n−6 fatty acids			
Concentration (μg/g DW)	% recovery		
18:1(n−9)-d6	18:2(n−6)-d6		
Elongase	20:2(n−6)-d4	20:3(n−6)-d4	20:4(n−6)-d4
Δ-5 Desaturase	20:5(n−3)-d5		

Substrates are shown in bold. Deuterated substrates were added to fresh *P. marinus* media to a concentration of 10 μg/ml using 10 mg/ml EtOH stock. *P. marinus* cells from a 7-day-old culture were pelleted and resuspended in the media at a concentration of 10^6 cells/ml. Ten milliliter cultures (n = 5) were incubated at 28 °C for 72 h, then collected and processed for fatty acid analysis. Peaks containing deuterated fatty acids were tentatively identified by comparison to chromatograms of cultures incubated with the same non-deuterated substrate and confirmed by chemical ionization GC/MS. Values presented are mg/g DW (n = 3); DW: dry weight.

3.3. Metabolism of deuterium-labeled n−3 fatty acids, 18:3(n−3)-d4 and 20:3(n−3)-d6 in *P. marinus* meronts

Deuterium-labeled 20:3(n−3) and 20:4(n−3) were detected in lipids of *P. marinus* meronts after incubation/cultivation with 18:3(n−3)-d4 for 72 h and 20:4(n−3)-d6 and 20:5(n−3)-d6 were found after incubation with 20:3(n−3)-d6 (Table 3). The incorporation of 18:3(n−3)-d4 was 12.8 ± 1.0, 11.2 ± 0.3, 11.3 ± 1.9, 10.6 ± 1.3, respectively. These results further provide evidence that at the meront stage, the parasite employed the Δ-5 pathway for AA synthesis: elongation of 18:3(n−3) to 20:2(n−6) and desaturation of 20:2(n−6) to 20:3(n−6) by Δ-8 desaturase then Δ-5 desaturase to make 20:4(n−6). The deuterium-labeled 20:4(n−6) accounted for 21% of the total AA pool.

Table 3

Table 3	Metabolism of deuterated n−3 fatty acids by *P. marinus*		
——	———— ———— ———— ————		
Deuterium-labeled n−3 fatty acids			
Concentration (μg/g DW)	% recovery		
18:3(n−3)-d4	20:3(n−3)-d6	20:4(n−3)-d6	
Elongase	20:2(n−6)-d4	20:3(n−6)-d4	20:4(n−6)-d4
Δ-8 Desaturase	20:5(n−3)-d5		

Substrates are shown in bold. Deuterated substrates were added to fresh *P. marinus* media to a concentration of 10 μg/ml using 10 mg/ml EtOH stock. *P. marinus* cells from a 7-day-old culture were pelleted and resuspended in the media at a concentration of 10^6 cells/ml. Ten milliliter cultures (n = 5) were incubated at 28 °C for 72 h, then collected and processed for fatty acid analysis. Peaks containing deuterated fatty acids were tentatively identified by comparison to chromatograms of cultures incubated with the same non-deuterated substrate and confirmed by chemical ionization GC/MS. Values presented are mg/g DW (n = 3); DW: dry weight.
Arachidonic Acid [20:4(n-6)] Synthetic Pathways

(A) Delta-6 (Δ6) Pathway

18:3(n-9) Δ12 18:3(n-9) Δ12 18:2(n-6) Δ12 20:3(n-9) Δ14 18:3(n-6) 20:2(n-6) 20:3(n-6) Δ15 20:4(n-6) 20:4(n-6)

(B) Delta-8 (Δ8) Pathway

18:2(n-6) Δ8 18:2(n-6) Δ8 20:2(n-6) Δ14 18:1(n-9) Δ8 20:1(n-9) Δ8 20:3(n-6) Δ8 20:4(n-6) Δ8

Fig. 2. Arachidonic acid [20:4(n-6)] synthetic pathways. (A) Delta-6 (Δ6) pathway; (B) Delta-8 (Δ8) pathway. E: elongation; Δ6, Δ-6 desaturase; Δ8, Δ-8 desaturase; Δ12, Δ-12 desaturase; Δ14, Δ-14 desaturase; Δ15, Δ-15 desaturase.

0.6% of the 20:3(n-3)-d8 added into the medium was found converted to 20:4(n-3)-d8. Results of this experiment further confirm the existence of a Δ-8 pathway in T. pyriformis meronts.

4. Discussion

Our previous studies demonstrated the ability of in vitro cultivated P. marinus meronts to synthesize arachidonic acid (AA) de novo using a 2-carbon substrate, 13C-labeled acetate [12]. Only free-living protists have previously been reported to have such a capability. Results of the present study further confirm this synthetic capability in P. marinus meronts, which synthesized AA utilizing the provided deuterated substrates, 18:1(n-9)-d6 and 18:2(n-6)-d4. Deuterium-labeled AA represented 11–21% of the total AA pool in the parasite.

Two pathways have been described for AA synthesis, the common delta-6 (Δ-6) pathway and the alternate delta-8 (Δ-8) pathway (Fig. 2). The substrate for both pathways is 20:1(n-9) and a second desaturation at the Δ-5 position to form 20:4(n-6). Thus, when the initial substrate is 18:2(n-6), the obligatory intermediates would be 18:3(n-6) and 20:3(n-6) for AA synthesis, if the Δ-6 desaturase pathway was employed. On the other hand, if the synthesis of AA were Δ-8 desaturation dependent, the obligatory intermediates would be 20:2(n-6) and 20:3(n-6), respectively. In the present study, the inability to detect the intermediate, 18:3(n-6), but the presence of 20:2(n-6) and 20:3(n-6) when P. marinus meronts were incubated/cultivated with substrates 18:1(n-9) or 18:2(n-6) indicated that the meront stage of this parasite synthesized 20:4(n-6) employing the Δ-8 pathway and Δ-6 desaturation was absent. In our previous study, incorporation of 13C-acetate into 18:3(n-6) was also not detected, but found in 20:2(n-6), 20:3(n-6), and 20:4(n-6) [12]. Additionally, the fatty acid 18:3(n-6) was not present in P. marinus cultured in two different media [22]. The lower level of deuterium-labeled 20:3(n-6) relative to 20:2(n-6) and 20:4(n-6) detected in meront lipids suggests that once 20:3(n-6) was produced, it was readily desaturated to 20:4(n-6) by a Δ-5 desaturase. Although further study is needed to define the processes of Δ-8 synthetic pathway enzyme systems and associated activities, the evidence of precursor–intermediate–product relation between 18:2(n-6), 20:2(n-6)/20:3(n-6), and 20:4(n-6) from the present study proves the presence and expression of Δ-8 desaturase in P. marinus. Apparently, P. marinus can first convert 18:1(n-9) to 18:2(n-6), from which to synthesize 20:4(n-6) – and/or use directly the 18:2(n-6) methyl ester provided in the media for the same purpose. Additional support for a Δ-8 pathway was provided by metabolism of the deuterium-labeled substrates, 18:3(n-3) to 20:3(n-3) and 20:4(n-3), and 20:3(n-3) to 20:4(n-3) and 20:5(n-3) using the sequential position-specific Δ-8 and Δ-5 desaturases. However, when 18:3(n-3) was used as the initial substrate, no 18:4(n-3) or 20:5(n-3) were detected. This further suggests that Δ-6 desaturase was not available to desaturate 18:3(n-3) to 18:4(n-3). The existence of Δ-14 desaturase in a eukaryotic system (the Asian corn borer, Ostrinia furnacalis) was first reported by Zhao et al. [28]. While we cannot rule out the conversion of 20:1(n-9) to 20:2(n-6) via a Δ-14 desaturase, the conversion of 18:1(n-9)-d6 to 18:2(n-6)-d6 via Δ-12 desaturase and the elongation of 18:2(n-6)-d4 to 20:2(n-6)-d4 suggest it is unlikely that a Δ-14 desaturase was used for arachidonic acid synthesis in P. marinus.

Usage of Δ-6 pathway or Δ-8 pathway or both for 20:4(n-6) synthesis is known to occur in higher eukayotes and protists [5]. Utilization of Δ-6 pathway for 20:4(n-6) synthesis has been described in ciliates, trypanosomatids [5], and some phytoplankton species, such as Porphyridium cruentum (Rhodophyceae), Ochromonas danica (Chrysophyceae), and Spirula platensis (Cyanophyceae) [21]. Conversely, employing the Δ-8 pathway to synthesize 20:4(n-6) has been described in the ciliated protozoan T. pyriformis [18] and in the soil amoebae, Acanthamoeba sp. [29,30]. In higher animals including mammals, AA is more commonly synthesized by the Δ-6 pathway. However, use of the Δ-8 pathway for 20:4(n-6) synthesis had been reported in rat liver and testis [31,32], in mouse liver [33], and in mammals including humans [34,35]. The significance of using Δ-8 pathway for 20:4(n-6) synthesis in higher animals is unclear, because of the presence of the competing Δ-6 desaturase pathway. However, the recent advancement
of molecular technology in identifying and cloning Δ-8 and Δ-6 desaturases isolated from organisms should allow for the investigation of their expression separately in the yeast, Saccharomyces cerevisiae. A Δ-8 desaturase has recently been isolated from the protist, Euglena gracilis and its expression has been tested in S. cerevisiae [36].

The fatty acid composition of P. marinus is similar to Acanthamoeba sp. [22,37]. Evidence of usage of Δ-8 pathway in AA synthesis, suggests that P. marinus shares a common ancestor with the free-living protists, T. pyriformis and Acanthamoeba sp. P. marinus disease transmission is via dispersal of infective cells in the water column. In nature, meronts are released from the infected host. The water born meronts are considered free-living prior to their entrance to a new host oyster as it feeds and filters water. The phylogenetic position of P. marinus has not been completely resolved. It had been placed in the Phylum Apicomplexa based on morphological similarity [13,38]. However, results of recent morphological and genetic analyses suggest that the phylogenetic position of P. marinus is closer to the dinoflagellates than to apicomplexans [39–41].

Polyunsaturated fatty acids (PUFAs), both (n − 3) and (n − 6), are not only essential membrane components, but also precursors of important molecules that play vital roles in most eukaryotes [42,43]. Mammals can synthesize (n − 3) and (n − 6) PUFAs from 18:2(ω − 6) and 18:3(ω − 3) derived from dietary sources [44]. The ability of P. marinus to synthesize PUFAs was not discovered until recently [12,22]. De novo AA synthesis may contribute to the virulence of P. marinus. Excess AA may produce harmful effects on the immune system due to a surplus of AA-derived eicosanoids [45–47]. There is increasing evidence that T. brucei and P. falciparum are capable of producing prostaglandins (PGs) from AA and its metabolites acquired from the host and that these AA-derived PGs are suppressive of host immune response [48–50]. Parasite-derived PGs are believed to be at least in part, responsible for the clinical symptoms, including fever and immunosuppression in patients with chronic African trypanosomiasis [51]. Unlike T. falciparum and T. brucei whose mammalian hosts are capable of de novo synthesis of AA, the oyster host of P. marinus does not have such an ability and must acquire AA from dietary sources [44,52,53]. Additionally, the PUFA profile of oysters is dominated by (n − 3) fatty acids such as 20:5(ω − 3) (icosapentaenoic acid, EPA) and 22:6(ω − 3) (docosahexaenoic acid, DHA) [23]. EPA and DHA accounted for 17 and 9%, respectively, of the total fatty acids and AA accounted for only about 5% of the total fatty acids. However, the purpose of synthesizing 20:4(ω − 6) de novo in P. marinus meronts is unknown and whether or not P. marinus meronts produce eicosanoids remains to be investigated.

In summary, the present study demonstrated that P. marinus meronts synthesized arachidonic acid, 20:4(ω − 6), from deuterium-labeled substrates 18:1(ω − 9) and 18:2(ω − 6) employing the Δ-8 synthetic pathway. After 3-day incubation/cultivation, the deuterium-labeled 20:4(ω − 6) represented 11–21% of the total 20:4(ω − 6) in the parasite.

Acknowledgements

This material is based upon work supported by the National Science Foundation, Metabolic Biochemistry Program, Molecular and Cellular Bioscience Division under Grant No. 0131108. The authors thank Ms. Georgeta Constantin for technical assistance. Contribution Number 2558 from the Virginia Institute of Marine Science, College of William and Mary.

References

