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The beneficial effects of fruit polyphenols on brain aging
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Abstract

Brain aging is characterized by the continual concession to battle against insults accumulated over the years. One of the major insults is
oxidative stress, which is the inability to balance and to defend against the cellular generation of reactive oxygen species (ROS). These ROS
cause oxidative damage to nucleic acid, carbohydrate, protein, and lipids. Oxidative damage is particularly detrimental to the brain, where the
neuronal cells are largely post-mitotic. Therefore, damaged neurons cannot be replaced readily via mitosis. During normal aging, the brain
undergoes morphological and functional modifications resulting in the observed behavioral declines such as decrements in motor and cognitive
performance. These declines are augmented by neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease
(AD), and Parkinson’s disease (PD). Research from our laboratory has shown that nutritional antioxidants, such as the polyphenols found in
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lueberries, can reverse age-related declines in neuronal signal transduction as well as cognitive and motor deficits. Furthermo
hown that short-term blueberry (BB) supplementation increases hippocampal plasticity. These findings are briefly reviewed in th
2005 Published by Elsevier Inc.
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. Introduction

Normal aging is accompanied by declines in motor and
ognitive performance[43]. These declines are amplified
n age-related neurodegenerative diseases such as amy-
trophic lateral sclerosis (ALS), Alzheimer’s disease (AD),
nd Parkinson’s disease (PD). As the elderly population

ncreases, so will the prevalence of these age-related dis-
rders[19,20,62]. In order to improve the quality of life

or the elderly and to alleviate the social and economic
urdens imposed by the prolongation of life expectancy,

t is crucial to devise strategies to impede or reverse age-
elated neuronal declines. There is substantial evidence that
xidative stress plays an important role in the aging process

33–35]. According to Dr. Denham Harman’s free radical
heory, aging is the accumulation of oxidative damage to
ells and tissues over time. It has been suggested that the
ehavioral and neuronal deficits seen in the elderly popula-
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tion are the result of an increasing vulnerability to dam
by free radicals[22,54]. This theory has fostered the fie
of nutraceutical research, which investigates the effec
dietary antioxidants as a means to reverse or slow the
process[5,30,40–42,45,88]. Our research has shown that s
plementation with fruits and vegetables are beneficial in
forestalling and reversing the deleterious effects of agin
neuronal communication and behavior (reviewed in[43]).
The observed protection may be the result of the antiox
and anti-inflammatory properties of the polyphenolic c
pounds found in these fruits and vegetables[66].

2. Oxidative stress and inflammation in brain aging

2.1. Oxidative stress

Reactive oxygen species (ROS) collectively refer to o
gen radicals and non-radicals that are readily convert
radicals[8,10,21]. ROS are the by-products of normal a
obic metabolism[3,14]. It is estimated that approximate
197-4580/$ – see front matter © 2005 Published by Elsevier Inc.
oi:10.1016/j.neurobiolaging.2005.08.007
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2–5% of the oxygen consumed by a cell is subsequently con-
verted to free radicals[23,83]. The production of ROS is nor-
mally counterbalanced by cellular defense systems[24,32].
However, about 1% of the ROS escape daily elimination
to give rise to oxidative cellular damage[4]. The process,
by which the production of ROS is not effectively neutral-
ized, leading to cellular damage, is known as oxidative stress
[32]. The extent of oxidative stress can be experimentally
determined by the quantification of end-products of nucleic
acid damage, lipid peroxidation, and protein oxidation
[46].

The brain is especially susceptible to oxidative stress
[23,32] for the following reasons. Weighing at about 2% of
the body mass, the brain utilizes 20% of the total oxygen con-
sumption. Besides, it is enriched with readily peroxidizable
polyunsaturated fatty acids. Moreover, the brain is not partic-
ularly endowed with antioxidant defenses: it has a very low
level of catalase activity and only moderate amounts of the
endogenous antioxidant enzymes, superoxide dismutase and
glutathione peroxidase. Additionally, the brain has high lev-
els of iron and ascorbate, which are the key catalysts for lipid
peroxidation. Also, many neurotransmitters themselves are
autoxidized to generate ROS[26,53,64,71]. Except for those
in some restricted regions of the brain, neuronal cells are post-
mitotic and tend to accumulate oxidative damage[3,79,80].
The notion of increased oxidative stress in the aging brain
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In fact, there is an increased interest in the study of the
beneficial effects of nutritional antioxidants on health via
the delay of aging and age-related diseases[25,43,49,82,87,
89].

3.1. Polyphenols in fruits and vegetables

Fruits and vegetables rich in polyphenols have been found
to be beneficial to brain function (reviewed in[76]). Some of
the fruits and vegetables used in our research include blueber-
ries, cranberries, strawberries, and spinach, all of which are
high in antioxidant capacities as measured by the modified
oxygen radical absorbance capacity (ORAC) assay[85]. This
may account for the positive results observed with blueberry
(BB) as well as other berry supplementation in rodent stud-
ies conducted in our laboratory as discussed in the following
sections.

3.2. Cognitive and motor behaviors

Normal aging is accompanied by behavioral deficits,
including cognitive and motor performances[2,39,50]. These
deficits are probably induced by oxidative stress and inflam-
mation[43]. To investigate whether nutritional antioxidants
would be effective in preventing these deficits, we fed Fischer
344 (F344) rats from adulthood (6-month-old) to middle age
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s supported by numerous studies[6,19,27,47,78]. There is
vidence that increased oxidative stress plays an impo
ole in the pathogenesis of neurodegenerative disease
s AD, PD, and ALS[9,15,77].

.2. Inflammation

Normal brain aging is also associated with elevated le
f neuroinflammation[16,28,63,70]. Inflammation is inti
ately linked to enhanced ROS production[17,29,52,56].
ocal unbridled over-production of ROS has been repo

n several inflammatory diseases[11,31,38]. Oxidative stress
ediated inflammation has also been attributed to neu
enerative disorders including AD and PD[18,36,37,57,61
7]. Neuroinflammation has been connected to enha
ignal transduction leading to the activation genes suc
he inducible nitric oxide synthase (iNOS), interleukin�
IL-1�), tumor necrosis factor-� (TNF-�), and nuclear facto
appa B (NF-�B) [1,49,60,65,69,72,81,86]. The neural
rotecting microglial cells have been found to be activate

nflammation to produce high levels of ROS and cytok
11,12,58,68,84].

. Neuroprotective effects of fruit polyphenols

Since the endogenous antioxidant defense system
ot 100% effective, it is plausible to suggest that nutritio
ntioxidants be exploited to combat the accumulatio
xidative stress over the ever-prolonging human lifes
15-month-old) with a control diet (ATN-93) or the diet su
lemented with either vitamin E (500 IU/kg diet) or extra
f strawberry or spinach containing the same millim
rolox equivalents of antioxidant capacity. We showed

ong-term feeding of these animals with the suppleme
iets prevented a variety of age-related deficits including
itive performance[45].

In a later study, we found that feeding aged (19-mo
ld) F344 rats for 8 weeks with diets supplemented
pinach, strawberry or blueberry extracts effectively reve
ge-related deficits in neuronal and cognitive function[44].
owever, only the BB-supplemented diets improved bal
nd coordination[44].

Amyloid precursor protein/presenilin-1 (APP/PSl) tra
enic mice have been used as a murine model for AD,

hese mutations facilitate the production of beta amy
nd consequently Alzheimer-like plaques in several reg
f the brain, followed by behavioral deficits[41]. To tes

f blueberry supplementation would prevent the behav
eficits, a group of these mice was given blueberry sup
entation beginning at 4 months of age and continuing
months. These 12-month-old mice were then tested

-maze to assess cognitive performance. The data sh
hat the BB-supplemented transgenic mice performed
arly to the non-transgenic mice, but significantly better t
he non-supplemented transgenic mice[41]. However, no
ifference in the number of plaques was observed bet

he BB-supplemented and non-supplemented APP/PSl
ven though behavioral deficits were prevented in the
upplemented animals[41].



S130 F.C. Lau et al. / Neurobiology of Aging 26S (2005) S128–S132

3.3. Signaling and neurogenesis

The discrepancy between plaque formation and improved
Y-maze performance seen in the BB-supplemented APP/PSl
mice versus the non-supplemented APP/PSl mice might be
due to alterations in signaling pathways induced by blueberry
supplementation[41]. The levels of extracellular signal regu-
lated kinase (ERK) and protein kinase C (PKC) were elevated
in the BB-supplemented APP/PSl mice as compared to those
found in the non-supplemented mice[41]. Both ERK and
PKC kinases are important in mediating cognitive function,
especially in conversion of short-term to long-term memory
[55,59,73,74]. Our findings suggested that BB supplementa-
tion might enhance neuronal signaling to offset the putative
deleterious effect of plaque deposition on behavioral deficits
seen in the BB-supplemented transgenic mice[41].

To correlate behaviors with blueberry supplementation-
induced alterations in signaling events, young (6-month-old)
and old (19-month-old) F344 rats were fed a control or
BB-supplemented diet for 8 weeks. These rats were then
given a battery of tests to evaluate their motor and cogni-
tive performances. After these tests the hippocampal expres-
sion of signaling markers including ERK1 and ERK2, as
well as PKC-� and PKC-�, were analyzed by immunoblot-
ting assays. BB supplementation significantly increased the
expression of PKC-� in the old rats[75]. The expression of
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memory errors[7]. In addition, BB-supplemented aged rats
showed significant increases in the protein levels of IGF-1,
IGF-1R and ERK, and these increases were also inversely cor-
related with the number of total memory errors[7]. The data
indicated that BB supplementation increased hippocampal
plasticity and cognitive performance via concerted mech-
anisms involving neurogenesis, neurotrophic factor IGF-1
and its receptor, and MAP kinase signal transduction cas-
cades. Taken together, these findings suggest that multiple
mechanisms may be involved in the beneficial effects of high
antioxidant fruits on aging.
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