Hyperhydricity reversal and clonal propagation of four-wing saltbush (*Atriplex canescens*, Chenopodiaceae) cultivated *in vitro*

Isaac Reyes-VeraA,C, Carol PotenzaB and Jerry BarrowB

ANew Mexico State University, Las Cruces, New Mexico 88003, USA.
BUnited States Department of Agriculture, Agricultural Research Service, Jornada Experimental Range, Las Cruces, New Mexico 88003, USA.
CCorresponding author. Email: ireyes@nmsu.edu

Abstract. *In vitro* propagated shoots of four-wing saltbush (*Atriplex canescens*, Pursh Nutt) showed severe symptoms of hyperhydricity. We show that the reversion of hyperhydric *A. canescens* shoots to normal shoots was significantly affected by the presence of inorganic nitrogen in the culture vessel. When the culture vessel was vented or when ammonium nitrate was deleted from Murashige and Skoog basal medium, rates of reversion were significantly higher. Although statistically significant differences were evident when comparing vented vs. non-vented treatments for each medium, the modified culture medium with vented closures was consistently the best treatment, showing a total cumulative frequency of 39.7% reversion to normal morphology, compared with a total cumulative frequency of 7.1% observed in the control treatment. Resulting normal shoots also showed significant improvements in further manipulations, including rooting *in vitro*, transplantation to soil and survival in native sites.

Introduction

Atriplex is a cosmopolitan genus with a high number of species distributed in all arid and semi-arid zones of the world. *Atriplex canescens* has been used extensively as a forage shrub in marginal agricultural lands of South Africa, Australia, the Middle East and North America. (Colomer and Passera 1990). *Atriplex* species supply high protein browse for livestock, with the content in *A. canescens* and related species ranging from 16.7 to 25% crude protein, on a dry matter basis (Khalil et al. 1986; Colomer and Passera 1990). Tissue culture technology is a powerful technique for clonal mass propagation of elite genotypes of four-wing saltbush for revegetation and phytoremediation programs in western arid rangelands in the United States of America (USA) (Salo et al. 1999; Bean et al. 2004; Sanderson and McArthur 2004). These regenerated clonal propagates can also be used as a source of genetically uniform biological material for basic research on *Atriplex* biology.

Hyperhydricity, or vitrification, is an induced physiological disorder and common problem of *in vitro* cultured plants (Debergh et al. 1992). Leaves and stems of hyperhydric plants are thick, distorted and brittle with a glassy (vitrified) appearance. Hyperhydricity is described as a nitrogen detoxification process in which carbohydrates are diverted from cellulose and lignin synthesis to amino acid biosynthesis, resulting in severe anatomical and biochemical abnormalities (Kevers et al. 1984; George 1996). This condition disrupts normal plant anatomy and physiology, and prevents rooting and establishment of *in vitro* propagated plants. Hyperhydric plants also exhibit non-functional stomata and an incompletely formed epidermis (Ziv et al. 1987; Ziv 1991; Schloupf et al. 1995). Hyperhydric tissue also suffers from bioenergetic arrest (Franck et al. 2001).

Causal explanations for the occurrence of hyperhydric conditions include high humidity and supraoptimal quantities of inorganic and organic supplements (George 1996; Hazarika 2006). For example, media rich in NH\textsubscript{4}+ ions induce hyperhydricity in willow. (Daguin and Letouse 1984; Daguin and Letouse 1986; Pàques 1991). However, supplementation of tissue culture medium with fish protein hydrolysates, a reduced form of nitrogen, prevented hyperhydricity and improved chlorophyll content in oregano shoot cultures (Andarwulan and Kalidas 1999; Eguchi et al. 1999). The most important environmental factor for the induction of hyperhydricity appears to be the continuous culture of plants in high relative humidity (Kidelman Dantas de Oliveira et al. 1997). Ventilation or aeration reduces relative humidity in the culture vessel and dilutes evolved gases, such as ethylene (Kevers and Gaspar 1985; Fal et al. 1999; Saher et al. 2004; Lai et al. 2005), which might contribute to the induction of hyperhydricity.

Hyperhydricity has been reported during *in vitro* propagation of several species of *Atriplex*, and cultured shoots may show a frequency of 30–90% (Wurtele et al. 1987; Tripathy and Goodin 1990; Kenny and Caligari 1996). Wochok and Sluis (1980) clearly describe the occurrence of hyperhydricity in shoot cultures of *Atriplex*, but fail to identify the phenomenon. Even though hyperhydricity is a frequently observed phenomenon in *Atriplex* propagation protocols, this issue has been poorly addressed. One of the most relevant problems of hyperhydricity is that only normal shoots were able to root.
Previous researchers have reported shoot proliferation from *Atriplex* explants, but root formation data were either omitted (Tripathy and Goodin 1990) or shown to occur at low frequencies (Wochok and Sluis 1980; Wurtele *et al.* 1987; Kenny and Caligari 1996). Hyperhydricity and ventilation, or hyperhydricity and ammonium have been reported in other plants (Daguin and Letouse 1984; Daguin and Letouse 1986; Fal *et al.* 1999). The aim of this research is to address hyperhydricity in *A. canescens* by modifying multiple key culture factors, including salt composition, supplemental additives and use of ventilated culture vessels. We also report *Atriplex* rooting efficiency with nodal or internodal cuts of the reverted shoots.

Materials and methods

Culture initiation

Four-wing saltbush seeds were surface sterilised with 95% ethanol for 1 min, 2.6% sodium hypochlorite for 7 min, then rinsed three times in sterile distilled water. Seeds were placed on hormone-free, low ionic concentration medium, based on White (1934). The *A. canescens* seedlings were then used to initiate shoot cultures by transferring them to shoot proliferation medium consisting of standard Murashige and Skoog (MS) basal salts (Murashige and Skoog 1962), with 11.42 μM indole-3-acetic acid (IAA), 18.58 μM 6-furfurylaminopurine (Kinetin), vitamin in the L2 formulation of Phillips and Collins (1979) and 30 g L⁻¹ sucrose, solidified with 0.8% (Kinetin), vitamin in the L2 formulation of Phillips and Collins (1979) and 30 g L⁻¹ sucrose, solidified with 2.5 g L⁻¹ of Phytagel (Sigma Chemical Co., USA). Growth regulator composition consisted of 24.61 μM 6-(γ-γ-dimethylallylamino) purine (2iP). The pH of the medium was adjusted to 5.8 ± 0.05, before autoclaving. The autoclaved medium was then dispensed in polycarbonate Magenta GA7 vessels (Magenta Corp., Chicago, IL, USA). Culture boxes were closed either with standard Magenta GA7 vessel covers or vented lids with a 10 mm polypropylene membrane (0.22 μm pore size, Magenta). All cultures were incubated at 28 ± 1°C under continuous fluorescent light (14–18 μmol m⁻² s⁻¹).

Hyperhydric *A. canescens* shoots, under propagation conditions, generate multiple bud clumps. These anatomically interconnected bundle shoots propagate and remain in a reduced morphological rosette-like condition with a completely suppressed apical dominance. Clusters of *Atriplex* rosettes exhibited classic hyperhydric characteristics, where leaves were abnormally thick, translucent and watery with a glass-like appearance. Clusters were used because individualised rosettes failed to grow and eventually died. Nine hyperhydrated multiple bud formations were used per Magenta vessel, with six replications per treatment. Hyperhydric *A. canescens* shoots that had visually reverted to a normal appearance (reverted shoots) were removed from vessels at the end of each culture period (30 days per period). Reverted shoots were defined as all shoots that elongated, reassumed apical dominance and overcame the rosette habit of growth.

Growth condition treatments

Hyperhydric *A. canescens* shoots were transferred to standard control shoot proliferation medium, or to modified MS medium (ammonium-free MS with NH₄NO₃ excluded from the original major salts composition) plus 4.40 g L⁻¹ of casein hydrolysate to provide an equivalent amount of total nitrogen comparable to the standard MS formulation. All experimental treatments were solidified with 5.0 g L⁻¹ of Agargel (Sigma Chemical Co., St Louis MO, USA). Growth regulator composition consisted of 24.61 μM 6-(γ-γ-dimethylallylamino) purine (2iP). The pH of the medium was adjusted to 5.8 ± 0.05 before autoclaving. Sterilised medium was then dispensed in 107 L × 107 W × 96 H mm LifeGuard polycarbonate culture boxes closed with vented lids (22 mm diameter and a 0.3 μm pore size; Osmotek Ltd, Israel). Two different types of explants from the reverted shoots were used in this rooting experiment. The first type of explant for rooting included 25 shoots that were excised between two leaf nodes (internodal cutting), whereas the second type of explant included 25 shoots where the stem section was cut just below a node (nodal cutting). All shoots were at least three nodes long. Rooted shoots were transferred to hydrated 30 mm JiffyPots peat pellets. The hardening process was carried out placing the shoots in peat pellets, inside Magenta boxes capped with vented lids, with a 10 mm polypropylene membrane (0.22 μm pore size, Magenta). This acclimatisation strategy was compared with rooted shoots transplanted to germination flats covered with a clear plastic cover and commercial soil mix.

Results

Atriplex canescens shoots, on standard propagation MS medium (control medium), in sealed petri dishes, showed severe hyperhydricity symptoms in 100% of cultures. Hyperhydricity reversion did occur in the control medium in sealed petri dishes, but at a very low frequency (data not shown). After induction, hyperhydric *Atriplex* bundle shoots were transferred to Magenta boxes with standard and modified media and with non-vented or
vented lids. Successful reversion to visually normal shoots occurred with all Magenta vessel cultures.

Statistically significant differences were evident when comparing vented v. non-vented for each medium treatment for all culture cycles. The reversion frequencies observed in every culture cycle were consistently higher in both vented treatments from 60 to 150 day periods (Fig. 1). The modified culture medium with vented closures was consistently the best treatment with a total cumulative frequency of reverted shoots of 39.7% (73 reverted shoots of 184 total reverted shoots), compared with a total cumulative frequencies of reverted shoots of 7.1% (13 reverted shoots of 184 total reverted shoots) observed in the standard control medium, non-vented treatment (see 150 days in Fig. 1).

The use of vented lids as main factor had significant effects on the reversion rate. Vented closures consistently resulted in significantly higher frequencies of reverted shoots after the initial 30-day period to the 150-day period. There was an observed two-fold increase in cumulative frequencies of reverted shoots over 30–150 days for the vented effect (67%, 123 reverted shoots of 184 reverted shoots) when compared with the non-vented effect (33%, 61 reverted shoots of 184 reverted shoots) (Fig. 2).

The use of the modified medium also had significant effects on shoot reversion rates. With the removal of ammonium from the medium formulation, the modified medium treatment gave a two-fold increase in total reversion rates with 121 (66%) and 63 (34%) total reverted shoots of 184 respectively (Fig. 3).

The statistical interaction between medium treatment and venting, as main effects, was evaluated for every analysis of variance. In all cases this interaction was not significant (data not shown). This shows that there was no synergistic effect in the use of both modified medium formulation with vented lids, and that the medium treatment and venting have independent causative effects on hyperhydricity. Therefore, to overcome hyperhydricity in *Atriplex*, improvements in both media formulation and ventilation of vessels are needed to propagate functional *Atriplex* shoots.

The use of vented lids, together with modified medium, showed the highest potential to produce newly reverted shoots each culture cycle. These reverted shoots recovered their characteristic ashen-green colour and elongated internodes with enhanced mechanical rigidity. Subsequent culture of reverted shoots in modified medium formulation with vented lids produced multiple normal looking shoots with a similar appearance to *in vivo* grown plants. The mean number of shoots

Fig. 1. Cumulative reversion of shoots per treatment of *Atriplex canescens* from 30 to 150 days. Cumulative reversions were calculated by adding together the total reverted shoots per treatment for each of the five culture cycles. Standard vented (open bars), standard non-vented (light grey bars), modified vented (dark grey bars), modified non-vented (black bars). (1) ANOVA significant at $P < 0.05(*)$ or $P < 0.01(**)$, NS = non-significant, (2) treatments with the same letter are not significantly different from each other by Duncan's multiple range tests.

Fig. 2. Cumulative frequencies of reverted shoots of *Atriplex canescens* by media formulation from 30 to 150 days. Cumulative frequencies of reverted shoots were calculated by adding up the total reverted shoots per media type for each of the five culture cycles. Standard MS (open bars), modified MS (black bars). (1) ANOVA significant at $P < 0.05(*)$ or $P < 0.01(**)$, (2) treatments with the same letter are not significantly different from each other by Duncan's multiple range tests.

Fig. 3. Cumulative frequencies of reverted shoots of *Atriplex canescens* by vented effect from 30 to 150 days. Cumulative frequencies of reverted shoots were calculated by adding up the total reverted shoots per vented v. non-vented effect for each of the five culture cycles. Non-vented (open bars) and vented (black bars). (1) ANOVA significant at $P < 0.05(*)$ or $P < 0.01(**)$, (2) treatments with the same letter are not significantly different from each other by Duncan's multiple range tests.
per reverted explant per culture cycle was 3.5×, a value similar to that for rapid in vitro multiplication of *A. canescens* reported by Wurtele *et al.* (1987).

Reverted shoots from all treatments showed no difference in rooting frequencies (data not shown). Therefore, the explants consisted of substituting high NO$_3$ to alleviate this metabolic disorder in 1985; George (1996), resulting in hyperhydricity. Our strategy other key carbon metabolic pathways, such as cellulose and nitrogen assimilation processes with a high carbon skeleton processes. Nitrogen rich media formulations also impose intense Relative high humidity, the environmental factor most relevant

Discussion

Relative high humidity, the environmental factor most relevant to hyperhydricity induction, is inherent in sterile, sealed in vitro processes. Nitrogen rich media formulations also impose intense nitrogen assimilation processes with a high carbon skeleton demand on cultured tissues, diverting valuable resources from other key carbon metabolic pathways, such as cellulose and lignin formation (Daguin and Letouse 1984; Kevers and Gaspar 1985; George 1996), resulting in hyperhydricity. Our strategy to alleviate this metabolic disorder in *A. canescens* cultures consisted of substituting high NO$_3$ and NH$_4$ ion concentration with casein hydrolysate, which provided a reduced non-toxic source of nitrogen, and by the use of vented lids to reduce relative humidity within the tissue culture vessel. In combination, vented lids and modified nitrogen formulation resulted in significantly higher reversion of *A. canescens* than either alone.

Reversion did occur in both non-vented and control medium formulations, although at a significantly lower frequency. This is potentially due to metabolism of high ammonium concentrations as cultures aged, dispersal of accumulated tissue culture gases during each 30 day transfer cycle and loss of water over time, which causes the salts, sugars and agar to become more concentrated, decreasing water potential in the medium and causing the relative humidity to fall (Gaspar 1991; George 1996). The reduction of the water potential in media culture by increasing agar concentrations has also been reported as a hyperhydricity cure (Pasqualetto *et al.* 1986; Brand 1993; George 1996).

The induction of hyperhydricity during tissue culture procedures is generally unwelcome and problematic. Gaining knowledge about the causes and remedies of this physiological disorder could yield practical applications. John (1986) induced and reverted hyperhydricity deliberately in *Picea sitchensis* because he found that hyperhydric and reverted shoots produced a significantly higher number of shoots when compared with control. George (1996) and Kidelman Dantas de Oliveira *et al.* (1997) have subsequently found that hyperhydric plants behave like cytokinin-habituated cultures. Therefore, hyperhydricity can be manipulated to boost multiplication rates without the use of growth regulators. Another practical application derived from the manipulation of the hyperhydricity phenomenon has been reported by Zimmerman (1996). Hyperhydric meristems are shorter and wider, with fewer developing primordial leaves. All cells showed a generalised reduced lignification (hypo lignification) with poor cell differentiation. These anatomical abnormalities make them more amenable for genetic transformation.

References

SAS Institute Inc.: Cary, NC

SAS Institute Inc.: Cary, NC

SAS Institute Inc.: Cary, NC

Manuscript received 21 June 2007, accepted 28 February 2008

http://www.publish.csiro.au/journals/ajb