Kaolin-based Particle Film Has No Effect on Physiological Measurements, Disease Incidence or Yield in Peppers

V.M. Russo

U.S. Department of Agriculture, Agricultural Research Service, South Central Agricultural Research Laboratory, P.O. Box 159, Lane, OK 74555

J.C. Díaz-Pérez

University of Georgia, Coastal Plain Experiment Station, P.O. Box 748, 4604 Research Way, Tifton, GA 31793-0748

Abstract. Heat stress can limit yield in pepper (Capsicum spp.), generally through flower and fruit abortion. A kaolin-based particle film, originally developed to protect fruit trees from insects, has been found to reduce temperatures in tissues of plants. A kaolin-based particle film was tested to determine if it could be used to improve yields of pepper in Oklahoma and Georgia. In Oklahoma, seedlings of a bell pepper, ‘Jupiter’, and a nonpungent jalapeño, ‘Pace 103’, were transplanted at three progressively warmer planting dates from mid-May to mid-July 2002 and 2003, that would ensure that inflorescences would be subject to high day and night temperatures and treated with the kaolin-based particle film. Applications were begun as the first flowers were set and continued through the settings of the first three flushes of flowers on a three-times a week schedule, or on an as needed basis, to determine if the kaolin-based particle film improved yield. In Georgia, the bell peppers ‘Camelot’ and ‘Heritage VR’ were transplanted on 24 Apr. 2003, and treated with the kaolin-based particle film. In addition to yield, physiological measurements and disease incidences were recorded in Georgia. In both locations treatment with water only served as controls. In Georgia, the kaolin-based particle film had no significant effect on net photosynthesis, stomatal conductance, leaf transpiration or leaf temperature, as measured at midday on clear days. In Oklahoma, planting bell pepper after 15 May is not recommended. Planting the nonpungent jalapeño after mid-June can reduce yields. The kaolin-based particle film did not affect yield at either location and is not recommended for use on peppers.

Peppers (Capsicum spp.) subjected to heat-induced flower and fruit abortion (Deli and Tiessen, 1969; Dorland and Went, 1947) can have reduced yields. A new technology, developed to limit insect damage in tree fruit, incorporates a kaolin-based particle film spray (Knight et al., 2001; Urruhi et al., 2000). It was determined that the particle film also cools tissues and protects plants from extreme heat and ultraviolet radiation (Glenn et al., 1999). When a kaolin-based particle film was applied to tomato plants, fruit development was delayed and yields were not affected (Makus, 2001). This project was undertaken to determine if a commercially available kaolin-based particle film could be used to affect pepper yields in Oklahoma and Georgia. In Oklahoma, peppers were transplanted at times when they would be exposed to heat stress, and an economic evaluation was conducted to determine the value of the crops. In Georgia, effects of the kaolin-based particle film on selected physiological responses, and disease incidence, were determined. Cultivars, production methods, and insect and disease control varied at the two locations.

Materials and Methods

Oklahoma. The experiment was conducted on a Bernow fine-loamy, siliceous, thermic Glossic Paleudalf soil with a pH of 7 at the South Central Agricultural Research Laboratory, Lane, Okla. The planting area was 25 × 60 m. Fertilizer was applied preplant and the area at each planting date received the recommended rate of 112N–112P–325K kg·ha⁻¹ (Motes and Roberts, 1994), which was based on the results of soil tests. The source of N was ammonium nitrate; P was P₂O₅; and K was muriate of potash. Raised beds (20 cm high and 18 cm wide) formed from bare soil were oriented east to west on 0.9-m centers. There were three planting dates in each year, 14 May, 11 June and 1 June 2002, 15 May and 23 June, and 14 July 2003. Plots on beds were 4.6 m long. Six-week-old greenhouse grown pepper (Capsicum annum L.) seedlings of ‘Jupiter’ bell pepper (Twilley, Hodges, S.C.), and a nonpungent jalapeño, ‘Pace 103’ (Campbell Seeds, Davis, Calif.), were transplanted at each date. Trays in which transplants were produced were 5.5 cm deep, 34 cm wide, and 67.5 cm long with 128 square cells that were 3.5 cm on each side (Speedling, American Plant Products, Oklahoma City, Okla.).

Transplants were established in beds in single rows with an in-row spacing of 0.46 m and 10 plants in each plot, using a mechanical transplanter (Holland Transplanter Co., Holland, Mich.), which provided a population equivalent of 24,216 plants/ha. In addition to the 10 treated plants there were two plants at either end of each plot, and single guard rows on the north and south that ran the entire length of the treatment plots.

Plants were treated with a kaolin-based particle film (Surround; Engelhard Corp., McInthey, Ga.) at a rate of 82 kg·ha⁻¹. A suspension was produced with 8.7 kg of the kaolin material in 100 L of water to which 45 mL of M03 surfactant (Engelhard Corp.) was added. The suspension was applied to plants with a backpack sprayer at initiation of first flower buds, with the spray applied to cover the leaves and the emerging or developing flower buds. After the first application the material was applied on a schedule (Monday, Wednesday, Friday) or on an as needed basis that was determined by a visual evaluation of the residual kaolin cover, and continued through production of the first three flushes of flowers. Controls were plants treated with water only. Plants received a minimum of 30 mm of water per week in the form of precipitation or through drip irrigation with emitters on 0.9-m intervals (TF-Tape, Robbins Irrigation, Ruston, La.). The field was scored to determine levels of insects or disease to determine the necessity for application of pesticides. Ambient day and night temperatures were provided from a weather station located about 100 m from the field.

The nonpungent jalapeño plants were harvested once when about 5% of the fruit in a plot were red. Fruit were considered marketable based on criteria provided by the supplier of the seed. Bell pepper plants were harvested three times over 14-d periods, in each planting date, when fruit were at least US Grade #1 (USDA, 1989). Number and yield of marketable and cull fruit were determined for both cultivars. Fruit were cull if they were undersized based on norms for each cultivar or were misspotted. There was minimal damage due to insects or diseases, and the effect of the particle film on insect damage was not estimated. Average fruit weight was derived mathematically from the total weight and the total number of fruit produced in plots. The pepper types have different growth habits and responses were not directly compared.

For each pepper type the experimental design was a split plot. The main factor was planting date. The method of application of the kaolin-based particle film was the subplot and application method was arranged in a randomized complete block within each planting date. Application treatments were replicated three times within each planting date in each year. Data were analyzed with the general linear models procedures in SAS (ver. 8, SAS, Inc., Cary, N.C.). Mean differences were separated using the Ryan-Einot-Gabriel-Welch multiple range test. In addition, terminal wholesale market prices at the Dallas Terminal Market for bell peppers, averaged over each harvest period for each planting date were accumulated, as well as the at dock price for the nonpungent jalapeños.

Georgia. The experiment was conducted at the Horticulture Farm, University of Georgia, Coastal Plain Experiment Station, Tifton, Ga., during 2003. The soil was a Tifton Sandy Loam

Received for publication 25 June 2004. Accepted for publication 25 July 2004. Financial support for the Georgia portion of the study was provided by the Georgia Agricultural Experiment Station. Thanks are afforded to D. Bertrand and D. Giddings for technical support and to Ben Mullinix for statistical assistance (all of them from the CPES, Univ. of Ga.). Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Dept. of Agriculture or the Univ. of Georgia and does not imply its approval to the exclusion of other products that may also be suitable.

*Corresponding author; e-mail vnuso-usda@lane-ag.org

(fine loamy-siliceous, thermic Plinthic Kandi-
dults) with a pH of 6.5. The experimental plot
consisted of 7.6-m long raised beds (20 cm high
and 0.9 m wide) formed from bare soil on 1.8-m
centers oriented north to south. Before laying
the mulch with a mulch-laying machine, the
soil was fertilized with 78N–34P–65K kg ha⁻¹,
using 780 kg ha⁻¹ of a ION-10P-10K fertilizer.
At the same time the mulch (white-on-black,
Plastitech, St-Remi, Quebec, Canada) was laid,
drip irrigation tape (T-Tape; T-Systems Intl.,
San Diego, Calif.), with 30.5-cm emitter spacing
and a 17 mL min⁻¹ emitter flow, was placed 5
cm deep in the center of each bed.

Six-week-old greenhouse-grown bell pepper
seedlings of ‘Camelot’ (Seminis, Oxnard,
Calif.) and ‘Heritage VR’ (Harris Moran,
Modesto, Calif.) were produced in trays (Plant
Way, Cambridge, U.K.) that were 5.5 cm deep,
34 cm wide, and 67.5 cm long with 338 square
cells that were 2.5 cm on each side. Transplants
were planted on 24 Apr. 2003 using a mechanical
transplanter in beds with double rows with a
between row separation of 0.36 m, and an in-row
spacing between plants of 0.3 m, which provided
a population equivalent of 35,880 plants/ha.

After transplanting, 240 mL of a soluble starter
fertilizer solution, consisting of 555 mL of a 10N-
14.8P-0K fertilizer mixed in 100 L of water, was
applied directly to the base of each transplant.
Three weeks after transplanting, plants were
fertilized weekly through the drip system with N
and K at rates of 1.5 kg ha⁻¹ d⁻¹ at early stages,
1.8 kg ha⁻¹ d⁻¹ during plant and fruit development,
and 1.3 kg ha⁻¹ d⁻¹ at late stages of plant
development. The total amount of N and K received
by the plants after transplanting was 153 kg ha⁻¹.

The rate of irrigation water applied was equal
to 100% of the evapotranspiration, corrected by
crop factor. Evapotranspiration and temperature
data during the course of the experiment were
collected from a nearby weather station.

Plants were treated with the same kaolin-
based particle film as above applied at 56
kg ha⁻¹, using a suspension of 6 kg of the kaolin
material in 100 L of water. The suspension was
applied weekly to plants for the entire season
with a back-pack sprayer starting two weeks
after transplanting. Controls were plants treated
with water only.

Leaf gas exchange measurements (net
photosynthesis, stomatal conductance and
transpiration) and leaf temperature were determined
with a portable photosynthesis system (LI-6400,
LI-COR Inc., Lincoln, Neb.). Gas exchange
measurements were conducted under ambient
temperature [31.0 to 32.5 °C (28 May) and 35 to
36 °C (31 May)] and air humidity conditions (18
to 26 mmol H₂O/mol) with CO₂ concentration
set at 400 μmol mol⁻¹ by means of a CO₂ mixer
and a CO₂ tank, and photosynthetically active
radiation (PAR) at 2,000 μmol m⁻² s⁻¹ using a
red–blue light source (LI-6400-02B; LI-COR,
Inc.). Measurements were conducted on clear
days (PAR > 1900 μmol m⁻² s⁻¹) from 12:00 to
14:00 Eastern Standard Time on 28 and 31 May
2003, using three developed and fully exposed
leaves per experimental plot. Each measurement
lasted about 45 to 60 s.

Plants were monitored weekly for symptoms
of southern blight (Sclerotium rolfsii Sacc.),
tomato spotted wilt, pythium rot (Pythium spp.),
or phytophthora blight (Phytophthora capsici
Leonard). To determine disease incidences,
symptomatic plants were tagged and the numbers
of symptomatic plants for each disease determined.
Samples of symptomatic plants were sent to
the disease clinic laboratory (Rural Development
Center, Tifton Campus, Univ. of Ga.), to confirm
the identification of the causal agents. Insecticides
were applied as needed, based on scouting (1 to
2 times a week) of the plants.

Bell peppers were harvested on 23 June and 7
July and graded according to the USDA standards
(USDA, 1989). Number and yield of marketable
and cull fruit were determined. Among cull
fruit, numbers of fruit with symptoms of either
blossom-end rot or sun scald were determined.
Average fruit weight was derived mathematically
from the total weight and the total number of fruit
produced in plots. The design was a latin square
with four treatments (‘Camelot’ and ‘Heritage
VR’; and two levels of the kaolin-based particle
film, 0 and 56 kg ha⁻¹), and four replications. Data
were analyzed with the general linear models

Results

Oklahoma. The trend to higher temperatures
as the season progressed were similar in both
years; and there were more precipitation events
in 2003 (Figs. 1 and 2). Insect and disease
pressure did not require the application of pesticides
for control. The number of scheduled, and as
needed, applications of the kaolin-based particle
film varied for the planting dates in both years.
Temperature and precipitation events required
fewer applications of the kaolin material in 2002
than in 2003. In 2002, the number of scheduled,
and as needed, applications required were 5 and
Table 1. Effect of planting data and application of a kaolin based particle film on yield factors for pepper cultivars in Oklahoma.

<table>
<thead>
<tr>
<th>Source</th>
<th>Marketable</th>
<th>Cull</th>
<th>Avg fruit wt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (1000/ha)</td>
<td>Yield (Mg-ha(^{-1}))</td>
<td>No. (1000/ha)</td>
</tr>
<tr>
<td>2002</td>
<td>Planting date</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>Particle film</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Planting date</td>
<td>14 May</td>
<td>58.8 b(^{1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 June</td>
<td>92.3 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 July</td>
<td>38.9 b</td>
</tr>
</tbody>
</table>

2003	Planting date	**	**	**	**	NS	NS							
	Particle film	NS	NS	NS	NS	NS	NS							
	Planting date	15 May	55.1 a	6.7 a	25.8 a	2.1 a	122.5 c	81.6 a	267.7 b	11.7 a	211.4 a	3.5 a	45.4 b	16.8 b
		23 June	11.5 b	1.6 b	3.3 b	0.3 b	140.6 b	86.2 a	318.7 a	13.1 a	159.0 b	3.7 a	40.8 b	23.6 a
		15 July	19.3 b	3.1 b	3.2 b	0.3 b	154.5 a	104.3 a	254.5 b	13.5 a	164.5 b	3.6 a	54.4 a	21.8 a

\(^{1}\)Values in a column followed by the same letter are not significantly different. Ryan-Einot-Gabriel-Welch multiple range test. \(^{**}\)NS: Nonsignificant or significant at \(P < 0.005\) or 0.01, respectively, by ANOVA. In each year there were no significant interactions.

Table 2. Wholesale market value averaged across particle film treatments for ‘Jupiter’ bell pepper and the non-pungent jalapeno pepper ‘Pace103’, in both years in Oklahoma.

<table>
<thead>
<tr>
<th>Planting date</th>
<th>Jupiter</th>
<th>Pace103</th>
<th>Jupiter</th>
<th>Pace103</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>10,488</td>
<td>10,200</td>
<td>11,079</td>
<td>7,020</td>
</tr>
<tr>
<td>2nd</td>
<td>10,307</td>
<td>9,660</td>
<td>1,260</td>
<td>7,860</td>
</tr>
<tr>
<td>3rd</td>
<td>4,246</td>
<td>4,860</td>
<td>2,685</td>
<td>8,100</td>
</tr>
</tbody>
</table>

\(^{1}\)In 2002 planting dates 1, 2, and 3 are 14 May, 11 June, and 16 July, respectively. In 2003 planting dates 1, 2, and 3 are 15 May, 23 June, and 16 July, respectively.

\(^{2}\)Average wholesale prices for ‘Jupiter’ in 2002 for the 14 May planting was $18 and for the 11 June and 16 July plantings was $11 per 12.7 kg carton; and for ‘Jupiter’ in 2003 for the 15 May planting was $21 and for the 23 June and 15 July plantings $10 and $11, respectively, per 12.7 kg carton. The wholesale price for ‘Pace103’ in both years was $0.60 per 1 kg.

In 2003, for ‘Jupiter’, the greatest marketable and cull number and yield were from the 15 May planting. The highest average marketable and cull fruit weights were from the 15 July planting. The cull fruit weight was not affected by planting date, average 90.7 g. For ‘Pace103’ the highest number of marketable fruit was from the 23 June planting, but yield (average 12.8 Mg-ha\(^{-1}\)) was not affected by planting date. The greatest number of cull fruit was from the 15 May planting date, but yield (average 3.6 Mg-ha\(^{-1}\)) was not affected by planting date. The highest average marketable fruit weight was from the 16 July planting, and the lowest average cull fruit weight was from the 15 May planting.

In both years the wholesale value for the yields fluctuated with planting date (Table 2). In 2002, the average wholesale market value for ‘Jupiter’ and ‘Pace103’ decreased as planting date was later even though the yield was considerably higher for the second planting date in that year. In 2003, the average wholesale market value for ‘Jupiter’ from the 15 May planting was 8.8- and 4.1-fold that for the 23 June and 15 July plantings, respectively. In that same year the value of the ‘Pace103’ yield increased about 13% from the first to the third planting dates. The income/ha for ‘Jupiter’ was due to the level of yield and the available price at the wholesale market. For ‘Pace103’ income/ha was dependent only on yield, the pattern of which was different for the 2 years.

Georgia. The trends of daily temperatures and precipitation events, and dates of application of the kaolin-based particle film, are shown in Fig. 3. There is a higher insect pressure affecting vegetable crops in Georgia and more pesticides were required during the season than in Oklahoma. Plants received eight insecticide applications [carbaryl (Rhone-Poulenc, Research Triangle Park, N.C.), applied 4 times; endosulfan (FMC, Philadelphia, Pa.), applied once; malathion (American Cyanamid, Parsippany, N.J.), applied once; and Spinosad (Dow AgroSciences, Indianapolis, Ind.), applied twice] for control of caterpillars and thrips. No pesticides were used to control diseases.

All gas exchange variables except leaf temperature were affected by cultivar, but not by the kaolin-based particle film (Table 3). ‘Heritage
Table 3. ANOVA of effects of cultivar and particle film applications on leaf gas exchange and temperature of bell pepper plants in Georgia.

<table>
<thead>
<tr>
<th>Source</th>
<th>Net photosynthesis (µmol·m⁻²·s⁻¹)</th>
<th>Stomatal conductance (mmol·m⁻²·s⁻¹)</th>
<th>Transpiration (mmol·m⁻²·s⁻¹)</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivar</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Particle film</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Cultivar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camelot</td>
<td>31.4 b†</td>
<td>319 a</td>
<td>7.2 a</td>
<td>33.0 a</td>
</tr>
<tr>
<td>Heritage VR</td>
<td>39.4 a</td>
<td>159 b</td>
<td>4.7 b</td>
<td>33.2 a</td>
</tr>
<tr>
<td>Particle film</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>37.6 a</td>
<td>257 a</td>
<td>6.0 a</td>
<td>32.9 a</td>
</tr>
<tr>
<td>No</td>
<td>33.1 a</td>
<td>220 a</td>
<td>5.9 a</td>
<td>33.3 a</td>
</tr>
</tbody>
</table>

*Values followed by the same letter are not significantly different. Duncan's multiple range test.

Table 4. Effects of cultivar and kaolin-based particle film on bell pepper yields in Georgia.

<table>
<thead>
<tr>
<th>Source</th>
<th>Marketable fruit</th>
<th>Culls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (1000/ha)</td>
<td>Yield (Mg·ha⁻¹)</td>
</tr>
<tr>
<td>Cultivar</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Particle film</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Cultivar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camelot</td>
<td>45.7 b†</td>
<td>8.0 b</td>
</tr>
<tr>
<td>Heritage VR</td>
<td>78.8 a</td>
<td>17.9 a</td>
</tr>
<tr>
<td>Particle film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>58.9 a</td>
<td>11.3 a</td>
</tr>
<tr>
<td>No</td>
<td>65.6 a</td>
<td>11.6 a</td>
</tr>
</tbody>
</table>

*Values followed by the same letter are not significantly different. Duncan's multiple range test.

NS = Non-significant or significant at P ≤ 0.01, respectively. ANOVA. There was no significant interaction between cultivar and particle film.

In Oklahoma, yields of bell pepper described different patterns for the 2 years, with lower yields not always associated with later planting. This suggests that environmental stress can occur early as well as later in the year. The reason for the higher yields for bell pepper in the second planting in 2002 in Oklahoma, is not immediately clear since temperatures during flowering were similar for the three plantings. This suggests that environmental effects over the entire growing season may be more important to yield than conditions occurring only during flowering. Wholesale market prices indicated that planting this bell pepper cultivar through mid-May should provide acceptable returns to the producer. The nonuniform Jalapeños appeared to have a better tolerance to environmental stresses when planted through mid-summer. This suggests that this type of pepper can be grown over an entire summer season in Oklahoma, and the market value data indicate they can provide adequate return to the producer.

In Georgia, use of the kaolin-based particle film did not significantly reduce leaf temperature, and this could explain the limited effect of the kaolin-based particle film on physiological responses. Shading of leaves during measurement of gas exchange variables may have affected leaf temperature. However, as in Table 3, we found no cultivar [26.7 °C (‘Camelot’) and 27.0 °C (‘Heritage VR’)] or kaolin-based particle film effects [27.0 °C (untreated) and 26.8 °C (treated) (p < 0.05)] on leaf temperature when canopy temperature was measured by infrared thermometry (12:00 HR, 25 June). Results in Georgia contrast with those of Jifon and Syvertsen (2003) who found that application of a particle film decreased leaf temperatures and increased net photosynthetic and stomatal conductance values under heat stress conditions. The lack of effect of the particle film in Georgia was possibly due to the lower amount of the particle film applied [26 mL/plant of the kaolin aqueous suspension (rate recommended by the manufacturer)] compared to that of Jifon and Syvertsen (300 mL/plant), even though in the two studies the same concentration of kaolin aqueous suspension was used (60 g L⁻¹). Additionally, plants in Georgia were treated with the particle film less frequently (once a week) than those in the study of Jifon and Syvertsen (twice a week).

Effects on yield were consistent in both locations, and were not benefited by use of the kaolin-based particle film. This was true when insecticides were applied, as in Georgia, or not applied, as in Oklahoma. The lack of benefit from the use of the kaolin-based particle film in plants in Georgia was also likely due to plants not being exposed to temperatures high enough to result in stress. In Oklahoma, plants were exposed to high day and night temperatures at different planting dates, but there was no benefit to yield due to use of the kaolin-based particle film. It is possible that in Georgia application rates of the kaolin-based particle film may have been too low to produce a significant degree of leaf whiteness, and reduce leaf temperature.

In Oklahoma the kaolin-based particle film was applied to protect flower and fruit buds from heat induced abortion, but may not have been applied far enough into the growing season. Based on the results the kaolin-based particle film is not recommended for use in production of peppers. However, additional research can be undertaken to determine if variation in rate, or frequency, of application can be used to improve pepper yield.

Literature Cited

