Research Article

Protective effect of dietary tomatine against dibenzo[a,l]pyrene (DBP)-induced liver and stomach tumors in rainbow trout

Mendel Friedman1, Tammie McQuistan2, Jerry D. Hendricks3, Cliff Pereira4 and George S. Bailey2

1 Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA, USA
2 Linus Pauling Institute and Department of Environmental Toxicology, Oregon State University, Corvallis, OR, USA
3 Marine Freshwater and Biomedical Sciences Center and Department of Environmental Toxicology, Oregon State University, Corvallis, OR, USA
4 Department of Statistics and Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA

The potential anti-carcinogenic effects of tomatine, a mixture of commercial tomato glycoalkaloids \(\alpha \)-tomatine and dehydrotomatine (10:1), were examined in the rainbow trout chemoprevention model. Prior to the chemoprevention study, a preliminary toxicity study revealed that tomatine in the diet fed daily at doses from 100 to 2000 parts per million (ppm) for 4 weeks was not toxic to trout. For the tumor study, replicate groups of 105 trout were fed diets containing dibenzo[a,l]pyrene (DBP) alone (224 ppm), DBP plus tomatine at 2000 ppm (N = 2), tomatine alone (N = 2), or control diet (N = 2) for 4 weeks. The fish were then returned to control diet for 8 months and necropsied for histopathology. Dietary tomatine was found to reduce DBP-initiated liver tumor incidence from 37.0 to 19.0% and stomach tumor incidence from 46.4 to 29.4%. Tomatine also reduced stomach tumor multiplicity. The tomatine-containing diets did not induce mortality, change in fish weights, or liver weights. No adverse pathological effects in the tissues of the fish on the tomatine diets were observed. Dose-response and chemopreventive mechanisms for tomatine protection remain to be examined. This is the first report on the anticarcinogenic effects of tomatine in vivo.

Keywords: Dibenzopyrene / Rainbow trout / Tomatine / Tomatoes / Tumor prevention

Received: May 16, 2007; revised: July 12, 2007; accepted: July 14, 2007

1 Introduction

Tomato plants (Lycopersicon esculentum) synthesize the glycoalkaloids dehydrotomatine and \(\alpha \)-tomatine, possibly as a defense against bacteria, fungi and viruses, and insects. [1–3], as reviewed in [4]. Commercial tomatine used in this study is a \(\sim 10:1 \) mixture of \(\alpha \)-tomatine and dehydrotomatine (Fig. 1) [5–7]. The structure of dehydrotomatine is similar to that of \(\alpha \)-tomatine, in that the former molecule has a double bond in the steroidal ring B of the aglycone. Note that both tomato glycoalkaloids have the same tetrasaccharide side chain. The tomato glycoalkaloid \(\alpha \)-tomatine has a tetrasaccharide side chain attached to the aglycone tomatidine, whereas the second glycoalkaloid present in tomato plants called dehydrotomatine has the same tetrasaccharide side chain attached to the aglycone tomatidenol.

Beneficial effects of tomatine include lowering cholesterol and triglycerides, enhancing the immune system, and antibiotic activities. We previously reported that dietary tomatine decreased plasma LDL cholesterol in hamsters fed a high saturated fat, high-cholesterol diet by 41% and plasma triglyceride concentrations by 47% [8]. Similar beneficial effects were observed with high-tomatine green tomato diets [9]. Because tomatine alone reduced both dietary cholesterol bioavailability and endogenous cholesterol, the data suggests that tomatine forms an insoluble complex with cholesterol from both dietary cholesterol and from endogenous cholesterol produced by the liver, which enters the digestive tract via the enterohepatic circulation.
The reported immunopotentiating effect of tomatine of T-cell mediated regression of lymphoid experimental tumors (EG7-Ova) may be the result of costimulation of CD80 and CD86 to induce antigen-specific cellular immunity [10]. Because tomatine induced antigen-specific cellular immunity in mice, the authors suggest that tomatine possesses remarkable potential as a vaccine adjuvant for infectious diseases as well as for cancer immunotherapy.

Recently, Ito et al. [1] found that the antibiotic effect of tomatine against the fungal pathogen *Fusarium oxysporum* involves activation of phosphotyrosine kinase and G-protein signaling pathways leading to Ca²⁺ elevation and accumulation of reactive-oxygen species (ROS). In related studies, Simons et al. [2] found that the mode of action of α-tomatine towards yeast cells involving cell membrane permeabilization is distinct from that of the aglycone tomatidine that lacks the tetrasaccharide side chain.

Using a microculture tetrazolium (MTT) in vitro assay, we previously reported that tomatine is a strong inhibitor of growth for both human colon and liver cancer cell lines, as evidenced by the concentration-dependent (0.1 to 100 μg/mL) inhibition of HT29 colon cancer cells at levels ranging from 38.0 to 81.5%, and of human HepG2 cancer cells, from 46.3 to 89.2% [11]. The antiproliferative activity against human liver cancer cells at a tomatine concentration of 1 μg/mL was higher than the corresponding activity observed with the commercial anticancer drug doxorubicin.

To further define the potential value of tomatine in the in vivo chemoprevention of cancer, the objective of the present study was to determine the ability of dietary tomatine to inhibit dibenzo[a,l]pyrene (DBP)-induced liver and stomach tumors in the trout model determined in a long-term feeding study. As a prerequisite to the tumor study, the acute toxicity of tomatine added to a control diet fed orally to rainbow trout was determined. DBP, a planar polyaromatic hydrocarbon, is a potent environmental hydrocarbon [12] and has been identified as a combustion product in coal smoke [13] and tobacco smoke [14]. DBP is a potent tumor initiator in mouse skin and rat mammary gland [12, 15, 16]. In the rainbow trout model, DBP initiates tumors in multi-organs; liver, stomach and swimbladder [17–19].

The rainbow trout model is highly sensitive to diverse chemical carcinogens and is a statistically powerful vertebrate model used in many comparative studies of chemical
carcinogenesis and its modulation by dietary inhibitors [17–27].

2 Materials and methods

2.1 Test compounds

Tomatine was purchased from Sigma Chemical Company (St. Louis, MO, USA). Dibenz[a,l]pyrene was obtained from the National Cancer Institute (NCI) Reference Standard Repository in Kansas City, MO, USA. Handling and storage of this potent multi-organ carcinogen was in accordance with National Institutes of Health and Oregon State University guidelines for Moderate Hazard Carcinogens. Both tomatine and DBP were dissolved in the oil component of the trout semi-synthetic Oregon Test Diet (OTD), [23, 25]. The concentrations of tomatine and DBP are expressed in parts per million (ppm) relative to the dry weight portion of the diet. DBP is light sensitive and was handled in subdued lighting. Diets with test compounds were prepared every 2 weeks and stored at –20°C until a day prior to feeding when the diets were moved to 4°C. DBP is stable in diets stored at –20°C for up to 2 years [28].

2.2 Animals

Shasta strain rainbow trout were spawned, reared and treated at the Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University as described [23, 26] under protocols from the National Institute of Health (NIH) and received approval from our Institutional Animal Care and Use Committee. Fry were fed the OTD from onset of feeding to dietary initiation [25].

2.3 Tomatine acute toxicity study

Because 2000 ppm tomatine in the diet was a dose tolerated by hamsters, we carried out a range-finding experiment up to this level in the trout diet to guide selection of future doses for a dose-response tumor chemoprevention study in trout. Tomatine over a range of doses (100, 500, 1000, and 2000 ppm) was added to the oil component of the diet and fed daily for 4 weeks to groups of 50 trout each. One tank of 50 trout was fed OTD alone as a control group. During the exposure, mortalities were recorded on a daily basis. At the end of the 4 weeks, 10 trout per tank were removed and overdosed with tricaine methanesulfonate, MS-222 [17]. The livers were removed, weighed, and examined for abnormality.

2.4 Cancer chemoprevention study

A total of 945 trout were allocated to 9 tanks, N = 105 each tank. Trout acclimatized to the tanks for one week prior to start of the carcinogen exposure. Duplicate tanks received the control diet (OTD), tomatine (2000 ppm), tomatine (2000 ppm) and DBP (224 ppm), and triplicate tanks received only DBP (224 ppm). After 4 weeks of dietary exposure, all groups were returned to OTD for 8 months and necropsied for gross pathology and histopathological examination.

2.5 Tumor histology

Trout were sacrificed by MS-222 overdose and liver and stomach tumor development were quantified as described [24, 25]. Tissues were examined under a dissecting scope for gross tumors (≥0.5 mm diameter), fixed in Bouin’s solution and processed by routine histological procedures. Numerous studies over the past twenty years have shown that 100% of stomach and 95% of liver tumors are surface-oriented outgrowths that are easily detected at gross necropsy [24, 26, 29]. From each organ having one or more suspect tumors at necropsy, one slide was prepared for histology. Tumor incidence is expressed as the percentage of fish with one or more confirmed tumors per tank.

2.6 Statistical analysis

Logistic regression was used to compare tumor incidences between treatment groups (Genmod procedure in SAS for Windows version 9.1.3). There was no evidence of extrabinomial variation between replicate tanks within treatment groups (deviance/df < 1, \(p > 0.47\) for both liver and stomach). Therefore, binomial variation was assumed and likelihood ratio tests used to compare treatment groups. More conservative tests (e.g. quasilikelihood \(t\)-tests using observed tank-to-tank variation) would also indicate significant differences (\(p < 0.03\) for both liver and stomach).

Exact two-sided rank tests (Kruskal-Wallis and Wilcoxon) [30] were used to compare tumor multiplicity (per gross tumor bearing animal) between treatment groups (Npar1way procedure in SAS). There was no or little evidence of differences between replicate tanks (\(p > 0.4\) for stomach in both treatment groups, \(p > 0.14\) for liver in both treatment groups). Therefore, data were pooled over replicate tanks and comparisons between treatment groups were based on individual fish multiplicity. More conservative tests (e.g. two-sided \(t\)-tests on tank means with 3 and 2 tanks per group) would give the same conclusions.

3 Results

Results of the acute toxicity studies with dietary tomatine concentrations ranging from 100 to 2000 ppm show that there were no significant differences in either the fish mortalities, body weights or the liver weights between groups (Table 1). The livers of trout fed tomatine showed no gross pathology. These observations suggest that tomatine at
70 mg/100 g wet weight is not acutely toxic to rainbow trout.

Table 2 shows tumor incidences and tumor multiplicities for both liver and stomach. Co-feeding tomatine and DBP significantly reduced the incidence of liver tumors by 48.7% and the incidence of stomach tumors by 36.6% compared to DBP alone ($p = 0.01$, $p = 0.03$ one-sided t-test), respectively. Control treatments, OTD and tomatine, showed no liver or stomach tumors.

Tumor multiplicity (total number of tumors per tank divided by the number of tumor-bearing trout in the tank) in the liver did not change significantly with the addition of tomatine. However, Table 2 shows that stomach tumor multiplicity did drop significantly ($p = 0.04$, one-sided t-test).

Figure 2 depicts the change in stomach tumor multiplicity by rank order. Of the tumor bearing trout fed only DBP, 24.7% had three to five tumors compared to 10% for those co-fed DBP and tomatine. Of the tumor-bearing trout fed DBP, 50.7% had only one tumor compared to 64.0% for those co-fed DBP and tomatine. Independently, neither change was statistically significant but the overall change in stomach tumor multiplicity was.

4 Discussion

4.1 Anticarcinogenic effects of tomatine

This is the first report on the anticarcinogenic effects of tomatine in vivo. Results of this initial study demonstrate that a moderate dietary dose of 2000 ppm tomatine provides anti-tumorigenic protection with potency similar to that previously observed for chlorophyll [19], chlorophyllin [18], and indole-3-carbinol [31] in the trout model. The mechanism(s) of the anticarcinogenic effect of tomatine remain to be investigated. Tomatine is known, however, to bind to cholesterol in the digestive tract [9, 32], suggesting...
that its protective mechanism could be similar to those of chlorophyll or chlorophyllin. Studies in trout and rats suggest that non-covalent complexes formed between chlorophyll and chlorophyllin and carcinogens including aflatoxin B1 [21, 22, 33–35], DBP ([17, 18] and Simonich, M. T., et al., submitted) and heterocyclic amines [20, 36–38] are poorly absorbed from the digestive tract, thus substantially blocking initiation of chemical carcinogenesis. The more-recent experiments show that this kind of protective mechanism for chlorophylls extends to human volunteers (Bailey et al., unpublished results). However, experiments analogous to those mentioned above for chlorophyll (results not shown) designed to find out whether tomatine binds to DBP were negative. These observations suggest that the mechanism of the tomatine effect probably differs from that proposed for chlorophyll.

We suggest that the mechanism(s) of the chemo-preventive effect of tomatine may be the result of multiple molecular events including formation of complexes with cholesterol [8], potentiation of the immune system [10], and direct destruction of cancer cells via disruption of cell membranes [11, 39, 40]. This latter process is initiated by binding (intercalation) of tomatine to cholesterol located within cell membranes [4, 41].

The bioavailability and in vitro binding of carcinogens by both tomatine and dehydrotomatine require further study.

4.2 Relationship to tomato-based diets

Consumption of tomato products containing high levels of lycopenes [42] is reported to be associated with lowered cancer risk [43], including colorectal adenomas [44]. Tomato-containing diets and lycopene also protected against N-methyl-N-nitrosourea (NMU)-induced prostate cancer in a rat model [45].

Our studies showed that the tomatine content of fresh tomatoes is quite low, ranging from ~4 to 42 mg/kg on a dry weight basis [7]. By contrast, tomatine levels of green tomatoes, including pickled green and fried green tomatoes are 50 to 100 times higher than those of the standard red varieties [7]. It is also relevant that red tomato varieties grown in the mountains of Peru contain high levels of tomatine [46]. These considerations suggest that (i) reported effects of red tomato-based diet against cancers and cholesterol may at least be due in part to tomatine; (ii) it would be of interest to ascertain whether high-tomatine green tomatoes exhibit anticarcinogenic properties in vivo; and (iii) there is a need to develop high-tomatine red tomatoes by suppressing the genes in the tomato plant that govern the formation of enzymes that degrade tomatine during post-harvest ripening of tomatoes.

We especially thank Eric Johnson, Greg Gonnerman, and Sheila Cleveland of the Sinnhuber Aquatic Research Laboratory for their excellence in fish rearing, necropsy, and histology. This work was partly supported through NIH grants CA90890, ES00210, ES03850, and funds from the Linus Pauling Institute at Oregon State University.

5 References

