Cloud immersion alters microclimate, photosynthesis and water relations in Rhododendron catawbiense and Abies fraseri seedlings in the southern Appalachian Mountains, USA

DANIEL M. JOHNSON and WILLIAM K. SMITH

1 USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
2 Department of Biology, Wake Forest University, Winston-Salem, NC 27109-7325, USA
3 Corresponding author (smithwk@wfu.edu)

Received May 31, 2007; accepted August 24, 2007; published online January 2, 2008

Summary The high altitude spruce–fir (Abies fraseri (Pursh) Poiret.–Picea rubens Sarg.) forests of the southern Appalachian Mountains, USA, experience frequent cloud immersion. Recent studies indicate that cloud bases may have risen over the past 30 years, resulting in less frequent forest cloud immersion, and that further increases in cloud base height are likely in the event of continued climate warming. To assess the impact of this trend on the regeneration of high altitude spruce–fir forests and the migration of plant communities, in particular the encroachment of spruce–fir forests and Rhododendron catawbiense Michx. islands into adjacent grass bald communities, we investigated effects of cloud immersion on photosynthetic parameters of seedlings of Abies fraseri and R. catawbiense in a grass bald site and A. fraseri in a forest understory. Although photosynthetic photon flux was 4.2 to 19.4-fold greater during clear conditions, cloud immersion had no effect on photosynthesis in A. fraseri at either site, whereas it reduced photosynthesis of R. catawbiense by about 40%. However, cloud immersion increased mean leaf fluorescence by 7.1 to 12.8% in both species at both sites. Cloud immersion increased mean relative humidity from 65 to 96%, reduced transpiration by 95% and reduced mean leaf-to-air temperature difference from 6.6 to 0.5 °C.

Keywords: altitude, climate change, diffuse light, fog, photo-inhibition, transpiration.

Introduction

Many high mountains of the southern Appalachians are mosaics of spruce–fir (Abies fraseri (Pursh) Poiret.–Picea rubens Sarg.) forests, northern hardwood forests and grass bald communities (Whittaker 1956, Mark 1958). The highest altitude spruce–fir forests experience cloud immersion on two days out of three and during 30–40% of all summertime hours (Mohnen 1992, Baumgardner et al. 2003). On the slopes of these mountains, the transition from lower-altitude hardwood forests to spruce–fir forests has been associated with the mean altitude of cloud base (Braun 1964). Cloud immersion occurs most often in early morning, and contributes about 45% of the annual water input through canopy interception (Smathers 1982).

Few studies have evaluated the effects of cloud immersion on the ecophysiology of forests (e.g., Motzer et al. 2005, Letts and Mulligan 2005). It has been predicted that cloud ceilings in mountain regions will rise in the event of climate warming (Croke et al. 1999, Still et al. 1999, Richardson et al. 2003). The consequent reduction in cloud immersion will likely affect the reproduction of high altitude forests and the migration of plant communities (Foster 2001), as has been reported in tropical cloud forests, where reduced cloud immersion due to recent climate warming has resulted in population decline or extinction of some species (Pounds et al. 1999).

Past studies on the ecophysiological effects of cloudiness and cloud immersion have focused on adult trees (e.g., Gu et al. 2002, Burgess and Dawson 2004, Min 2005). However, impacts on seedling establishment may be more important in assessing how changing climate will affect forest regeneration and the encroachment of forest species into montane grass balds, where they may displace endemic and rare plant species (Sullivan and Pitillo 1988, Weigl and Knowles 1999).

Both cloud immersion (i.e., fog and mist) and cloud cover can result in major changes in the incident photon flux and directional quality (diffuse versus direct) of sunlight (Gu et al. 1999, Letts and Mulligan 2005, Min 2005). An increase in the proportion of diffuse sunlight has been correlated with increased photosynthetic carbon gain in certain forest types (Min 2005, Johnson and Smith 2006). Cloud immersion can also result in other microclimatic changes, including a reduction in leaf temperatures (T_l) and leaf-to-air vapor pressure deficit (LAVD) (Gu et al. 2002).

Our objective was to measure photosynthesis (A), transpiration (E) and associated microclimatic parameters (solar irradiance, temperature and humidity) in Abies fraseri (Pursh) Poiret. (evergreen conifer) and Rhododendron catawbiense Michx. (evergreen broadleaf) seedlings in a southern Appalachian spruce–fir forest and an adjacent grass bald community.
under clear skies and during cloud immersion. Leaf fluorescence was measured to assess effects of cloud immersion on photosynthetic capacity. We hypothesized that photosynthesis of understory seedlings would be greater (because of increased sunlight penetration) and photosynthesis in establishing seedlings in grass balds would be reduced during cloud immersion. Leaf temperature (T_l) and E were expected to be lower in both the forest understory and adjacent grass bald during cloud immersion, leading to increased water-use efficiency (WUE).

Materials and methods

Study sites

Spruce–fir forests, northern hardwood forests and grass bald communities are the dominant vegetation types in high altitude areas of Roan Mountain, NC, USA (Mark 1958). Spruce–fir forests dominate the highest altitudes and are composed of canopy trees Abies fraseri and Picea rubens, associated shrubs and small trees (Sambucus pubens Michx. and Rhododendron catawbiense), various understory ferns (Athyrium filix-femina (L.) Roth, Dryopteris campyloptera Clarkson and Dryopteris intermedia (Muhl. ex Willd.) A. Gray) and herbs (Aster divaricatus L., Eupatorium rugosum Houtt. and Oxalis montana Raf.) (Whittaker 1956). Grass bald communities occur on mountain top areas surrounded by spruce–fir stands and are composed primarily of the grass, Danthonia compressa Austin with isolated islands of Rubus spp., the shrubs Alnus crispa (Aiton) Pursh and R. catawbiense, as well as P. rubens and A. fraseri islands (Mark 1958).

Two study sites with an area of approximately 20 m2 were selected on an east-facing slope of the Roan Mountain massif (36° 5' N, 82° 8' W, 1910 m a.s.l.); one in a spruce–fir forest (FS), the other in a contiguous grass bald–forest ecotone (GB). The GB site had little canopy cover and received about 5.5 times more cumulative daily sunlight than the FS site (32.1 and 6.4 mol m$^{-2}$ day$^{-1}$, respectively; Figure 1).

Photosynthesis, water relations and microclimate

Photosynthetic carbon assimilation rate (A), leaf fluorescence (variable-maximum; F_v/F_m, maximum photosystem II (PSII) efficiency), T_l and water status (Ψ, stem xylem pressure potential) were measured in 3–5-year-old seedlings of Abies fraseri (at both FS and GB) and Rhododendron catawbiense (at GB only). Photosynthetic photon flux (PPF) on a horizontal surface (LI-190 PAR sensor, Li-Cor Lincoln, NE), air temperature (T_a) and relative humidity were also measured.

Measurements were made on six days in the summer of 2006, including periods during four of those days (May 30, June 15, June 29 and July 15) that were chosen as representative of clear and cloud-immersed conditions. Mean above-canopy PPF during clear and cloud-immersed periods was 976 and 146 µmol m$^{-2}$ s$^{-1}$, respectively. Cumulative daily PPF at GB and FS, was recorded every 10 min for 4 days (June 15–18) with a Li-Cor LI-190 PAR sensor connected to an amplifier (Model UTA, EME Systems, Berkeley, CA) and a data logger (HOBO H8, Onset Computer, Bourne, MA) (Figure 1).

Photosynthesis, T_l, T_a and air vapor pressure were measured at 0800, 1000, 1200 and 1400 h on each measurement date. Seedlings were selected randomly for each measurement, some seedlings being measured more than once during the season. Net photosynthetic CO$_2$ fluxes were computed on a leaf area basis. For R. catawbiense, the area of leaf in the chamber was measured with a leaf area meter (DT Area Meter, Delta-T Devices). The area of A. fraseri needles was estimated from the length and diameter (from cross section) of 25 randomly selected needles. The number of needles per unit of stem length and the computed needle areas were used to estimate total needle area in the cuvette during each photosynthesis measurement. Photosynthesis was measured with a Li-Cor LI-6400 portable photosynthesis system with a 6400-05 leaf chamber, which allows for natural illumination of leaves (i.e., both adaxial and abaxial surfaces as well as direct and diffuse components). Wet leaves were blotted with tissue paper before the gas exchange measurement, and vapor pressure of ambient air was recorded before each gas exchange measurement. Leaf temperature was measured with an infrared thermometer (Raynger ST80, Raytek, Santa Cruz, CA) and T_a was measured with a fine-wire thermocouple (contained within the LI-6400-05 leaf chamber). Variable fluorescence and F_m of seedlings were measured at about 0530–0600 (predawn), 1000 and 1400–1500 h with a PAM fluorimeter (Model FMS-2, Hansatech Instruments, Norfolk, U.K.). All leaves were dark adapted for 20 min before measurement, and subsequently received a 2 s light pulse (3 mmol m$^{-2}$ s$^{-1}$).

Stem xylem pressure potential was measured between 0530 and 0600 h (predawn, Ψ_{ps}) and between 1400 and 1500 h (midday, Ψ_{pm}) on each measurement date with a Scholander-type pressure chamber (Model 1000, PMS Instrument Company, Corvallis, OR). Gas exchange and Ψ measurements were made on adjacent (within 3 m) seedlings.

Transpiration could not be measured accurately during periods of cloud immersion because water accumulated on leaf surfaces (Smith and McClean 1989). Therefore, E before chamber enclosure was estimated based on the vapor pressure

Figure 1. Representative course of solar irradiance on a clear-day at the grass bald (GB, thin line) and forest (FS, thick line) sites. Values are cumulative daily photosynthetic photon flux (PPF) for each site.
of the ambient air, the vapor pressure estimated for leaf intracellular spaces (calculated from T_i and assuming 100% relative humidity within the leaf), and an estimated leaf conductance of 150 mmol m$^{-2}$ s$^{-1}$ based on measurements with dry leaves on clear days at the same time of day. To calculate WUE when E was 0 mmol m$^{-2}$ s$^{-1}$ because of cloud immersion, E were set to 0.1 mmol m$^{-2}$ s$^{-1}$.

Sampling and statistics

Effects of site, species and cloud immersion on measured variables were evaluated by analysis of variance (ANOVA). Where treatment effects were significant, the Tukey–Kramer multiple-comparison method (Zar 1999) was used to determine the significance of differences among means.

Results

Solar irradiance, photosynthesis and leaf fluorescence

At both sites, cloud immersion reduced mean PPF by a factor of 4.2 to 19.4 (Figures 2 and 3b). Although A differed significantly between species, site and condition (clear versus immersed, Table 1), not all pairwise comparisons differed significantly (Table 2). The effect of cloud immersion on A of *A. fraseri* was not significant at either FS or GB (Table 1, Figure 4a). However, when data for clear and cloud-immersed conditions were combined, mean A of *A. fraseri* at GB was 2.6 to 9.5 times greater than at FS. The photosynthetic rate of *R. catawbiense* was 2.3 times that of *A. fraseri* during clear periods, but there was no difference between species during cloud immersion. Although F_v/F_o did not differ significantly between species, it was 7.3% greater at FS than at GB and was increased 7.1–12.8% by cloud immersion in both species at both sites (Tables 1 and 2, Figures 3c and 4b).

Water status and transpiration

Predawn xylem pressure potential of *R. catawbiense* was nearly constant on all measurement dates (Figure 5). Afternoon Ψ_{pd} of *R. catawbiense* and both Ψ_{pd} and Ψ_{m} of *A. fraseri* tended to increase throughout the season, although they were most negative on the completely clear day of May 30, and least negative on the completely cloud-immersed day of July 15.

Under clear conditions, E of *R. catawbiense* was higher than that of *A. fraseri* (Table 2). Otherwise, E did not differ significantly between species and sites (Table 1). In contrast, E was 83–95% lower during cloud immersion than during clear periods in both species. Median and mean E during cloud immersion were 0 and 1.6 mmol m$^{-2}$ s$^{-1}$, respectively (Figure 6a), whereas the corresponding values under clear conditions were 3.9–8.3 mmol and 7.2 mmol m$^{-2}$ s$^{-1}$, respectively. Mean water-use efficiency (A/E) was less than 1.0 μmol mmol$^{-1}$ (Figure 6b) in both species and at both sites during clear conditions, but was greater during cloud immersion (1.5, 7.4 and 4.1 μmol mmol$^{-1}$ in *A. fraseri* at FS, *A. fraseri* at GB, and *R. catawbiense* at GB, respectively).

Figure 2. Incident photosynthetic photon flux (PPF) and net photosynthesis (A) at each site during clear and cloud-immersed conditions for *Rhododendron catawbiense* and *Abies fraseri* seedlings. Observation codes: *Abies fraseri* (A); *Rhododendron catawbiense* (R); forest site (F); grass bald (B); clear conditions (C); and cloud immersed (I).
Table 2. Mean photosynthetic carbon fixation rate \((A, \mu\text{mol m}^{-2} \text{s}^{-1})\), leaf fluorescence \((F/F_m)\), transpiration rate \((E, \text{mmol m}^{-2} \text{s}^{-1})\) and leaf temperature \((T_1, \degree\text{C})\). Values are means for all observation dates. Different letters within a column indicate significant differences \((P = 0.05, \text{Tukey-Kramer multiple comparison})\). Observation codes: Abies fraseri (A); Rhododendron catawbiense (R); forest site (F); grass bald (B); clear conditions (C); and cloud immersed (I). Abbreviation: SD = mean standard deviation.

<table>
<thead>
<tr>
<th>Observation</th>
<th>(A)</th>
<th>(F/F_m)</th>
<th>(E)</th>
<th>(T_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>0.47 a</td>
<td>0.85 a</td>
<td>7.98 a</td>
<td>22.8 a</td>
</tr>
<tr>
<td>ABC</td>
<td>1.23 b</td>
<td>0.78 b</td>
<td>8.15 a</td>
<td>27.0 b</td>
</tr>
<tr>
<td>RBC</td>
<td>2.77 c</td>
<td>0.77 b</td>
<td>5.53 b</td>
<td>29.0 b</td>
</tr>
<tr>
<td>AFI</td>
<td>0.12 a</td>
<td>0.91 c</td>
<td>0.86 c</td>
<td>19.5 c</td>
</tr>
<tr>
<td>ABI</td>
<td>1.14 b</td>
<td>0.88 ac</td>
<td>0.39 c</td>
<td>19.1 c</td>
</tr>
<tr>
<td>RBI</td>
<td>1.67 b</td>
<td>0.86 a</td>
<td>0.95 c</td>
<td>20.4 c</td>
</tr>
<tr>
<td>SD</td>
<td>0.53</td>
<td>0.03</td>
<td>1.98</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Mean \(T_1\) was 5.5 \(\degree\text{C}\) lower at FS than at GB on clear days, and 6.6 \(\degree\text{C}\) lower in both species at both sites during cloud immersion than during clear periods (Figure 7a). Leaf temperature of \(R.\) catawbiense was 1.7 \(\degree\text{C}\) higher than that of \(A.\) fraseri at GB and 3.6 \(\degree\text{C}\) higher at FS, although the difference was significant only at FS during clear conditions. Leaf-to-air temperature differences (LATD) were small in both species at both sites under both clear and cloud-immersed conditions.
conditions (Table 1, Figure 7b), although variation in LATD was least during cloud immersion.

Mean vapor pressure deficit (VPD) of ambient air ranged from 0.9 to 1.2 kPa during clear-sky conditions, but was reduced to about 0.1 kPa during cloud immersion (corresponding to 62–68 and 95–97% relative humidity, respectively, Figure 6). Leaf-to-air vapor pressure difference was about 0.1 kPa during cloud immersion but was 1.0–1.3 kPa during clear conditions.

Discussion

Studies on cloud immersion in the southern Appalachians have focused primarily on the negative impacts of increased exposure to pollutants via increases in surface deposition. Polluted cloud water is damaging because of its low pH and high sulfate and nitrate concentrations (Mohnen 1992, Thornton et al. 1994). Recently, the interaction between cloud immersion and understory plant photosynthesis has been investigated by Letts and Mulligan (2005) and Johnson and Smith (2006), who reached conflicting conclusions about the effects of cloud immersion on incident irradiance and photosynthesis. However, these studies were performed in different community types: Johnson and Smith (2006) reported increases in understory irradiance and photosynthesis with immersion in closed forests of the southern Appalachians; whereas Letts and Mulligan (2005) reported decreased irradiance and photosynthesis in deforested areas. During either cloud cover or cloud immersion, reductions in solar irradiance would be expected in open forests and deforested areas, whereas increased irradiance, as a result of the greater penetration of diffuse light, might be expected in more closed forest types.

Sunlight, photosynthesis and leaf fluorescence

In general, the occurrence of clouds alters the irradiance, spectral quality and directional character (i.e., diffuse versus direct) of sunlight (Urban et al. 2007). Clouds typically increase the diffuse component of sunlight, enabling greater penetration into canopies (lower attenuation coefficients) and understories compared with direct-beam radiation (Campbell and Norman 1998). Studies of the interaction of clouds, sunlight penetration and canopy photosynthesis have shown that diffuse light from clouds not only increases canopy penetration, but also canopy photosynthesis per unit ground area (Roderick et al. 2001, Gu et al. 2003, Min 2005, Urban et al. 2007) and radiation-use efficiency (e.g., Hollinger et al. 1994). However, Graham et al. (2003) found that adding light under cloudy conditions increased photosynthesis in a tropical tree species, and Letts and Mulligan (2005) predicted that decreases in PPF, due to cloudiness, would result in reduced plant photosynthesis in a tropical forest. It is likely that variation in photosynthetic responses to cloudiness and cloud immersion is associated with differences in both forest structure (i.e., open or closed canopy) and cloud type (optically thick versus thin) (Min 2005).

In our study, PPF was greater during clear periods than dur-
Photoinhibition (Demmig-Adams and Adams 1992). How-
are indicative of photoprotective mechanisms rather than possible that the reductions in F/F_m of the cumulative daily sunlight received by the bald site. It is expected to be reduced at these sites during cloud immersion (Johnson and Smith 2006).

Photosynthesis was reduced in R. catawbiense during cloud immersion, but not in A. fraseri, at either FS or GB. It is likely that A in R. catawbiense (which is found primarily in open areas) saturates at a higher PPF than A. fraseri (in FS A. fraseri, A became light saturated at about 400 μmol m$^{-2}$ s$^{-1}$; Johnson and Smith 2005). However, F/F_m was greater during cloud immersion than during clear periods in both A. fraseri and R. catawbiense seedlings. Values of F/F_m greater than 0.85, as reported here, are atypical for most plant species (Björkman and Demmig 1987), but have been observed in species grown in deep shade (e.g., Adams et al. 1990). We found the highest F/F_m values in seedlings from FS, which receives only 20% of the cumulative daily sunlight received by the bald site. It is possible that the reductions in F/F_m observed on clear days are indicative of photoprotective mechanisms rather than photoinhibition (Demmig-Adams and Adams 1992). However, previous studies have reported decreases in A concomitant with similar decreases in F/F_m to those we measured (e.g., Ögren and Sjöström 1990, F/F_m decreased from 0.87 to 0.76).

Cloud immersion may prevent the reductions in F/F_m (and associated reductions in photosynthesis) commonly observed in understory species exposed to periods of intense sunlight (e.g., Oberhuber and Bauer 1991, Araus and Hogan 1994, Houter and Pons 2005) through reductions in incident solar irradiance, as well as through higher nighttime and lower daytime T_e. In addition, the more homogeneous nature of sunlight during cloud immersion may prevent the induction period experienced by many understory plants on clear days when periods of intermittent light and dark are common (i.e., sun patches; Chazdon and Pearcy 1986).

Cloud immersion may also provide a more favorable sunlight environment for photosynthesis compared with clear conditions by reducing the risk of photoinhibition in young seedlings growing in open areas and by increasing sunlight penetration of cloud (diffuse) light versus direct beam sunlight to young seedlings growing in the forest understory. Although it is unclear what impact future decreases in cloud immersion will have on young seedlings in the understory and adjacent grass balds, greater or more frequent photoinhibition in seedlings growing in open areas is likely, which may reduce the encroachment of A. fraseri and R. catawbiense into grass balds.

Water status and transpiration

Cloudiness, and particularly cloud immersion, can provide benefits other than increased diffuse light, including lower T_e and reduced LAVD, both of which can significantly decrease E (Young and Smith 1983, Gu et al. 2002). Cloud immersion in southern Appalachian forests has both positive (water input, Smothers 1982) and negative effects (pollutant deposition, Thornton et al. 1994). Cloud immersion may also result in leaf wetness (Letts and Mulligan 2005, Reinhardt and Smith 2008) which could reduce carbon gain as a result of the limited diffusion of CO$_2$ across a water film on the leaf surface (Smith and McClean 1989). Leaf wetness during cloud immersion has been observed in our study species (Reinhardt and Smith 2008, and authors' unpublished observations). However, many plant species in areas with frequent leaf wetting have strategies for surface water repulsion (Brewer et al. 1991, Brewer and Smith 1997). Water beading on hydrophobic leaf surfaces has been reported to reduce E (saturated boundary layer), increase photosynthetic carbon gain as a result of increased stomatal opening at low LAVD, and substantially increase WUE (Smith and McClean 1989).

We estimated that cloud immersion caused a reduction in E of as much as 95% and a 5–7.4-fold increase in WUE compared with clear-sky conditions. These data corroborate other studies showing that E is reduced in individual trees during immersed/cloudy conditions (Graham et al. 2003, Burgess and Dawson 2004). Predawn and afternoon stem water potentials were less negative during cloud immersion than during clear conditions. Although this may partially reflect seasonal differences in water status (late May compared with mid-July), for-
Leaf and air temperatures

Compared with clear conditions, cloud cover can result in lower T_1 (e.g., Leuschner 2000) which would also reduce the driving force for E (LAVD, Nobel 2005). Cloud immersion resulted in reduced T_1 and leaf-to-air pressure deficits in both our study species. In addition, T_1 was tightly coupled to T_u during cloud immersion compared with clear-sky periods. Reductions in daytime T_1 and LATD, along with increases in nighttime T_1 (a strong consequence of cloudiness and immersion) may prevent either high- or low-temperature photoinhibition, which may be a characteristic of many high altitude environments (Germino and Smith 2000). Photoinhibition has been linked to reductions in seedling carbon gain and survival in high altitude systems (Germino et al. 2002) and could contribute to changes in seedling establishment patterns and community composition in the event of climate change and the associated changes in cloud-immersion regimes (Still et al. 1999).

In conclusion, changes in cloud base height have been correlated with population declines in tropical cloud forests (Pounds et al. 1999). Thus, data relating microclimate to plant physiology under cloudy and cloud-immersion conditions may be critical for predicting the effects of changes in cloud patterns on plant community composition and distribution.

Acknowledgments

This work was supported by a National Science Foundation grant to WKS (Ecology and Evolutionary Physiology). We thank Spencer Bissett, Lauren Eiter, Nicole Hughes and Keith Reinhardt for assistance in field data collection and critical discussion of ideas.

References

