Molecular Analysis of Soybean Lines with Low Palmitic Acid Content in the Seed Oil

Andrea J. Cardinal,* Joseph W. Burton, Ana Maria Camacho-Roger, Ji H. Yang, Richard F. Wilson, and Ralph E. Dewey

ABSTRACT

Palmitic acid is the major saturated fatty acid found in soybean [Glycine max (L.) Merr.] oil, accounting for approximately 11% of the seed oil content. Reducing the palmitic acid levels of the oil is desirable because of the negative health effects specifically associated with this fatty acid. One of the genetic loci known to reduce the seed palmitate content in soybean is fap_{nc}. Previous studies indicated that fap_{nc} is associated with a deletion in a gene (designated $FATB$) encoding 16:0-ACP thioesterase activity. In this report, we isolated full length cDNAs from three of the four unique $FATB$ genes expressed in soybean and show that the isoform designated $GmfATFBIa$ represents the specific gene deleted in lines possessing the fap_{nc} locus. Allele specific primers corresponding to $GmfATFBIa$ were used to genotype plants from two F4-derived populations that were segregating for fap_{nc}. The $GmfATFBIa$-specific markers were effective in accounting for 62 to 70% of the genotypic variation in palmitate content in the two populations studied. Because the markers developed in this study are 100% linked to the locus of interest, they should be particularly useful in marker-assisted selection programs designed to lower the palmitic acid levels of soybean oil.

SOYBEAN is an important crop that provides 57.7% of the world’s oilseed production (USDA statistics, 2003). Soybean oil is mostly composed of triacylglycerols (TAGs). The relative composition of saturated and unsaturated fatty acids in the seed TAGs determines the quality of an oil. Palmitic acid (16:0) is the predominant saturated fatty acid in soybean oil. Oil from typical soybean cultivars contains 110 to 120 g kg$^{-1}$ palmitic acid (Burton et al., 1994; USDA-ARS, National Genetics Resources Program). Consumption of oils with reduced palmitic acid content is desirable to reduce the health risks of coronary diseases and breast, colon, and prostate cancer properties associated with this fatty acid (Hu et al., 1997; Henderson, 1991).

Soybean oil quality can be improved through genetic alteration of the plant. Several lines with reduced palmitic acid concentration have been developed by mutagenesis. C1726 (85.4 g kg$^{-1}$ 16:0) was developed from X-radiation of cultivar Bay (Fehr et al., 1991a; Stojšin et al., 1998; Wilcox and Cavins, 1990; Rahman et al., 1996). In addition, one natural mutation was discovered in line N79-2077 (64 g kg$^{-1}$ 16:0) and its derived line N79-2077-12 from the fifth cycle of recurrent selection for high oleic concentration (Burton et al., 1983, 1994). The alleles conferring low palmitic acid in these lines were given different names: $fap1$ (in C1726), $fap3$ (in A22), fap_{nc} (in N79-2077), fap or $fapx$ (in ELLP2), and $sop1$ (in J3) (Schnebly et al., 1994; Stojšin et al., 1998; Wilcox and Cavins, 1990; Kinoshita et al., 1998; Primomo et al., 2002). Of those five alleles, three are at independent loci from each other ($fap1$, $fap3$, and fap^*) (Schnebly et al., 1994; Stojšin et al., 1998; Wilcox et al., 1994; Kinoshita et al., 1998; Primomo, 2000; Primomo et al., 2002). fap_{nc} is allelic to $fap3$ (Primomo, 2000; Primomo et al., 2002). $sop1$ is independent of the $fap1$ locus, but its allelic relationship to the other loci is unknown (Kinoshita et al., 1998).

In addition to the major genes mentioned above, minor-modifier genes influence the low palmitic acid content in soybean oil (Stojšin et al., 1998; Rebetzke et al., 1998b, 2001; Li et al., 2002; Horejsi et al., 1994). Rebetzke et al. (1998b) observed heritability estimates for 16:0 content on a plot basis between 0.37 and 0.73 and on an entry-mean basis between 0.83 and 0.96. They concluded that selection based on evaluations in a few environments for both major and minor genes would be successful.

Correlated changes in the other saturated and unsaturated fatty acids in the soybean oil have been observed in low palmitic acid lines that carry the major and minor genes described above. For example, when lines homozygous for the $fap1$ and $fap3$ alleles (<1.5 g kg$^{-1}$ 16:0) were compared with normal lines (>100 g kg$^{-1}$ 16:0) derived from the same population, the low palmitic acid lines tended to have reduced stearic acid (18:0) and increased oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3) contents (Ndzana et al., 1994). Similarly, progenies that inherited the major fap_{nc} allele from the cross of N87-2122-4 to two high yielding normal palmitate lines had a 6 to 15% reduction in stearic acid, (Rebetzke et al., 1998b, 2001) a 4 to 10% increase in oleic acid content in both crosses (Rebetzke et al., 1998a, 2001) and an increase in linolenic acid content in one cross (Rebetzke et al., 1998a). No differences in linoleic acid were observed between progenies that inherited the major fap_{nc} allele and those that inherited the normal allele (Rebetzke et al., 1998a). However,

Abbreviations: BLUP, best linear unbiased predictor; EST, expressed sequence tags; FATA, 18:1-ACP thioesterase gene; FATB, 16:0-ACP thioesterase gene; KAS II, 3-ketoacyl-ACP synthase II; PCR, polymerase chain reaction; TAGs, triacylglycerols; 16:0, palmitic acid; 18:0, stearic acid; 18:1, oleic acid; 18:2, linoleic acid; 18:3, linolenic acid.

Andrea J. Cardinal, Ana Maria Camacho-Roger, Ji H. Yang, and Ralph E. Dewey

Genomics, Molecular Genetics & Biotechnology
doi:10.2135/cropsci2006.04.0272

© Crop Science Society of America

677 S. Segoe Rd., Madison, WI 53711 USA

Published online February 6, 2007

Reproduced from Crop Science. Published by Crop Science Society of America. All copyrights reserved.
there was significant genetic variation within each major fap locus group because of the segregation of minor genes (Rebetzke et al., 1998a). Within these groups, there was a significant negative genetic correlation between palmitate and oleate and a significant positive correlation between palmitate and linolenate (Rebetzke et al., 1998a). Palmitate content in soybean oil was negatively correlated with linolenate content and positively correlated with oleate content in a population that was segregating for the fap1 and fan loci (Nickell et al., 1991).

Several steps in the TAG biosynthetic pathway could affect the palmitate concentration. In the case of low palmitic acid mutants, changes in activity or substrate specificity in 3-ketoyl-ACP synthetase II (KAS II), 16:0-ACP thioesterase, lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, or diacylglycerol acyl transferase enzymes could be responsible for their phenotype. A biochemical study comparing glycerol acyl transferase enzymes could be responsible for the 16:0-ACP thioesterase, lysophosphatidic acid acyltransferase, and 18:0-ACP desaturase mutants, changes in activity or substrate specificity affect the palmitate concentration. In the case of low palmitic acid mutants, changes in activity or substrate specificity in 3-ketoyl-ACP synthetase II (KAS II), 16:0-ACP thioesterase, lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, or diacylglycerol acyl transferase enzymes could be responsible for their phenotype.

Sequence information from soybean ESTs available in GenBank was used to synthesize PCR primers corresponding to the 3' flanking regions of the GmFATB1a, GmFATB1b, and GmFATB2a genes. To obtain sequence information from the respective 5' flanking regions, reverse primers directed against individual GmFATB genes were used together with a vector-specific primer and a soybean cDNA library that we had previously cloned into a yeast expression vector as a template (Dewey et al., 1994). The following primers were designed to amplify full-length cDNAs using the above described first-strand cDNA from Century as the template: forward primer 5'-TCTACCCGAAGGGCGACCTC-3' and reverse primer 5'-CCCCCTTACCCCAAGAATGTA-3' (GmFATB1a); forward primer 5'-TACCTCTACAGCTGGCCGTAG-3' and reverse primer 5'-CCCCCTTACCCCAAGAATGTA-3' (GmFATB1b); and forward primer 5'-GTAAGGCGTAGGGGTGTGTTT-3' and reverse primer 5'-ACACCAAGCAGCTGACAAC-3' (GmFATB2a). Nucleic acid and predicted protein sequences were aligned and compared using the CLUSTALW (Thompson et al., 1994) and GAP (University of Wisconsin Genetics Computing Group) algorithms.

Amplification of Genomic DNAs

Genomic DNA was prepared from young soybean leaf tissue as previously described (Murray and Thompson, 1980). Primers 5'-GACATAGTTCAAGTGACACT-3' (forward) and 5'-TTCACAAACACAAAGTTGTCAC-3' (reverse) were used to amplify a 1178-bp fragment of GmFATB1a genomic DNA. The corresponding region of GmFATB1b genomic DNA was amplified using primers 5'-GACATAGTTCAAGTAGACACC-3' (forward) and 5'-TTCACAAACACAAAGTTGTCAC-3' (reverse). Three introns were observed within this specific region of the GmFATB1 genes. The partial genomic sequence information generated by these primers is shown in supplemental Fig. S1 and have been deposited in GenBank as Accession no. DQ861997 (GmFATB1a) and no. DQ861998 (GmFATB1b).

GmFATB1a- and GmFATB1b-Specific Molecular Markers

On the basis of the results of a GmFATB1a versus GmFATB1b genomic sequence analysis, PCR primers were designed against regions predicted to have sufficient polymorphism to yield gene-specific amplification products. A 312-bp fragment of GmFATB1a (marker FATB1a-312) was amplified by primers 5'-TGACATAGTTCAAGTGACACT-3' (forward) and 5'-GCAAAATGCAATGATTACCTG-3' (reverse). The corresponding region of GmFATB1b (marker FATB1b-314) was amplified by primers 5'-GACATAGTTCAAGTAGACACC-3' (forward) and 5'-GCAAAATGCAATGATTACCTG-3' (reverse). Specificity of the primers was verified by sequence analysis of the fragments amplified by each primer pair. The sequences of the amplified products corresponding to the expected sequences of the GmFATB1a and GmFATB1b fragments (data not shown). Similarly, an additional marker pair was generated to separate a region of the GmFATB1 genes using the following primer pairs: 5'-GACATCTCTCAAGTCGCACCTG-3' (forward) and 5'-TTCACAAACACAAAGTTGTCAC-3' (reverse) (GmFATB1a-specific marker FATB1a-411); and 5'-TGACATAGTTCAAGTAGACACC-3' (forward) and 5'-TTCACCAACACCAATGATTGTCAC-3' (reverse) (GmFATB1b-specific marker FATB1b-417). PCR reactions were conducted in a standard buffer (10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl2) with 200 μM dNTPs, 20 pmol each primer, 50 ng of genomic DNA template and

MATERIALS AND METHODS

Amplification and Sequence Analysis of Full Length Soybean FATB cDNAs

Total RNA was isolated from developing seeds of soybean cultivar Century using the TRIzol reagent according the manufacturer’s protocol (Invitrogen, Carlsbad, CA). Poly (A)+ RNA was subsequently recovered from total RNA using the Messagemaker system (Invitrogen). First-strand cDNA was synthesized from poly (A)+ RNA using an oligo-dT primer and SuperScript II reverse transcriptase (Invitrogen).
2.5 U Taq polymerase in a final reaction volume of 50 μL. Thermocycling was conducted with an initial 5 min incubation at 94°C, followed by 30 cycles of 94°C for 30 s, 52°C for 30 s, 72°C for 1 min, and a final 4 min extension at 72°C. Amplification products were visualized following separation on 1.2% (w/v) agarose gels containing 0.3 μg mL⁻¹ ethidium bromide.

Development of Populations

Two F4-derived populations were developed by single seed descent (Brim, 1966). One population (FAHH00) was derived from the cross of a high yielding line, ‘Corsica’, and a low linolenic, low palmitic acid line, N97-3681-11. A second population (FADD00) was derived from the cross of high yielding line, ‘Brim’, and a low linolenic, low palmitic line, N97-3708-13. N97-3681-11, N97-3708-13 and the cultivar Satellite are sister lines that were derived from different F3 plant selections from the cross ‘Soyola’ × ‘Brim’ (2) × [N88-431(2) × (N90-2013 × C1726)]. Line N88-431 was selected from the cross N88-1299 × N82-2037. N84-1299 was a selection from the first cycle of a high protein recurrent selection population (Holbrook et al., 1989). N90-2013 is a reduced palmitic acid mutant allele from N79-2077-12, the low palmitic fap1 mutant allele. In addition, N97-3681-11 and N97-3708-13 are F4-derived lines and are assumed homozygous for the low palmitic fap1 mutant allele from N79-2077-12, the low palmitic fap1 mutant allele from C1726, and the low linolenic fapnc (PI123440) allele. In addition, N97-3681-11 and N97-3708-13 are highly related to Brim, and the coefficient of parentage between these lines and Brim is 0.777 (data not shown). Therefore, in the Brim × N97-3706-13 population only 22.3% of the soybean genome is expected to be segregating.

Phenotypic Evaluation of Populations

Each population was evaluated in separate field experiments. Ninety-eight F4-derived lines and the parents of the FADD00 population and 99 F4-derived lines and one parent (N97-3681-11) of the FAHH00 population were grown at Plymouth, NC, in 2002 and Caswell and Plymouth, NC, in 2003. Within each environment, the experimental design for each population was a 10 × 10 lattice with two replications. At harvest time, a 30 g subsample of seed from each plot was analyzed for fatty acid content, by gas-liquid chromatography (GLC) of the methyl esters, at the USDA-ARS laboratory, Raleigh, NC. Fatty acid content is reported in grams per kilogram of total lipids.

Genotypic Evaluation of Populations

DNA was extracted by a CTAB (hexadecyltrimethylammonium bromide) protocol from a bulk of leaf tissue from several plants of each line (Li et al., 2002). FATB1a-312 and FATB1a-411 allele specific primer markers were used to perform PCR analysis with genomic DNA from each line in the two populations. The PCR reactions consisted of: 0.8 μL of 5 pmol/μL forward and reverse primers, 0.5 μL of 3.125 mM dNTPs, 3 μL of 15 mM MgCl₂, 0.05 μL of Taq polymerase, 3.35 μL of ddH₂O, and 5 μL of 10 ng/μL DNA. The PCR protocol included a first step of denaturation at 95°C for 5 min, then a second step of denaturation at 92°C for 1 min, a third step of annealing at 59°C for 1 min, a fourth step of extension at 69°C for 2 min, then steps two to four were subsequently repeated for 36 cycles. The reactions were performed in a 96-well PTC-100 thermal cycler (MJ Research, Inc., Waltham, MA) or a 384-well PTC-200 thermal cycler (MJ Research, Inc.). The amplified fragments were separated in 4% (w/v) SFR agarose (AMRESCO, Inc., Solon, OH) gels stained with ethidium bromide and visualized under UV light. The genotype of the FATB1a-312 and FATB1a-411 markers were scored as a presence or absence of a 312- or 411-bp band.

Statistical Analysis of Populations

The fatty acid data from each population were analyzed as a lattice design across environments by PROC Mixed, SAS 8.2 (SAS Institute, Inc., 1999). Locations, replications, incomplete blocks, and lines were considered random effects. Since lines were considered a random effect and a mixed model approach was used, then a best linear unbiased predictor (BLUP) for each line was obtained by adding the overall mean effect to the random effect of each line (SAS Institute Inc., 1996). The BLUPs for each fatty acid for each line were then used to perform a t test to compare the effect of inheriting one or two copies of the FATB1a-312 or FATB1a-411 marker alleles (homozygous or homozygous wild type) versus zero copies (homozygous mutant). The FATB1a-312 or FATB1a-411 marker class was the independent variable, and the BLUPs for each line for each fatty acid were the dependent variable in the analysis. The mean of lines homozygous or heterozygous for the FATB1a-312 or FATB1a-411 allele (presence of wild-type allele), the mean of lines homozygous for the absence of the FATB1a-312 or FATB1a-411 allele (mutant allele), the standard deviation of those means, the difference between means, and the R-square for the model were obtained using SAS Proc GLM, SAS 8.2 (SAS Institute, Inc., 1999).

RESULTS AND DISCUSSION

Isolation of Soybean FATB Genes

We have previously shown through RNA blotting assays that soybean lines homozygous for the fap1a locus accumulate less FATB transcripts than normal soybeans (Wilson et al., 2001b). Subsequently, Southern blotting experiments showed that the fap1a locus was associated with a FATB deletion event (Wilson et al., 2001a). Analysis of the numerous EST sequences with FATB homology that have been deposited in GenBank enabled us to define four highly similar yet distinct FATB sequences, designated GmFATB1a, GmFATB1b, GmFATB2a, and GmFATB2b. ESTs corresponding to GmFATB1a are the most prevalent, represented by 22 independent entries; ESTs corresponding to GmFATB1b, GmFATB2a, and GmFATB2b are found one, five, and seven times, respectively (data not shown).

Using a modified 5’-RACE strategy, full-length cDNAs of GmFATB1a, GmFATB1b, and GmFATB2a were amplified from the soybean cultivar Century and sequenced. The nucleotide and predicted protein products of GmFATB1a and GmFATB1b both share over 96% sequence identity. In contrast, approximately 73% nucleotide sequence identity (79% predicted protein identity) is shared between either GmFATB1a or GmFATB1b and the GmFATB2a sequence. Although full-length sequence information for GmFATB2b is lacking, alignments of the partial sequences derived from GenBank suggest that this sequence is approximately 95% identical to GmFATB2a (data not shown). These
results, the existence of four isoforms that can be assigned into two pairs by sequence similarity, are very similar to those reported for the omega-3 desaturase \((\text{FAD3} \text{ gene}) \) that converts linoleoyl-PC to produce linolenoyl-PC in soybean (Bilyeu et al., 2003; Anai et al., 2005). Four similar \(\text{FAD3} \) sequences were observed that were grouped as two closely related pairs on the basis of sequence similarity. Both the \(\text{FATB} \) and \(\text{FAD3} \) gene sequence observations are congruent with the hypothesis that the soybean genome had undergone both an ancient and a more recent duplication event (Shoemaker et al., 1996; Schlueter et al., 2004; Pfeil et al., 2005). According to this model, some soybean genes would be expected to be represented by four copies within the genome that could be separated in two pairs that would be more similar within each pair that originated from the more recent duplication event.

In silico analysis of the EST database indicated that the \(\text{GmFATB1a} \) gene isoform is the most prevalent. In addition, the \(\text{fap}_n \) allele had the strongest low palmitic acid phenotype of all mutations characterized to date. From these observations, we speculated that \(\text{GmFATB1a} \) would be the best candidate for being the specific \(\text{FATB} \) isoform deleted in \(\text{fap}_n \) lines. To test this possibility, we attempted to generate gene-specific PCR primers that would uniquely amplify the \(\text{GmFATB1a} \) isoform. However, because of the high sequence identity shared between \(\text{GmFATB1a} \) and \(\text{GmFATB1b} \), we had difficulty finding sufficient polymorphisms for producing primers that would enable reliable, unambiguous amplification of these highly homologous genes. To overcome this problem we amplified a region of \(\text{GmFATB1a} \) and \(\text{GmFATB1b} \) genomic DNA (Fig. S1). By designing PCR primers on the basis of polymorphic regions found within both exon and intron regions, gene-specific markers capable of distinguishing \(\text{GmFATB1a} \) and \(\text{GmFATB1b} \) were created. As shown in supplemental Fig. S1, marker \(\text{FATB1a-312} \) is defined by primers that specifically amplify a 312-bp fragment of the \(\text{GmFATB1a} \) gene when genomic DNA is used as a template; marker \(\text{FATB1a-411} \) is generated using a primer pair that amplifies a 411-bp genomic fragment of \(\text{GmFATB1a} \). Similarly, markers \(\text{FATB1b-314} \) and \(\text{FATB1b-417} \) are the products of \(\text{GmFATB1b} \)-specific primers that amplify 314- and 417-bp products, respectively.

Expected amplification products were observed for all four \(\text{FATB} \) markers when genomic DNA from normal soybean cultivar Dare was used as a template (Fig. 1A). Soybean lines C1726 and C1727, which possess the \(\text{fap1} \) and \(\text{fap2} \) mutations, respectively, that alter the palmitic acid content of the soybean seed, yet are nonallelic to \(\text{fap}_n \), also yielded the expected PCR products for all four markers. In contrast, when genomic DNAs from two lines that are homozygous for the \(\text{fap}_n \) locus (N79-2077 and N93-2008) were used as template, only markers corresponding to \(\text{GmFATB1a} \) amplified a DNA segment (Fig. 1A). These results indicate that \(\text{GmFATB1a} \) is the specific \(\text{FATB} \) isoform that is deleted in soybean lines possessing the \(\text{fap}_n \) locus. Furthermore, PCR reactions using genomic DNA from the \(\text{fap}_n \) containing low palmitate lines N97-3681-11 and N97-3708-
 completamente definitive results were subsequently assayed with the FATB1a-411 marker to ensure accurate genotyping. DNA bulks of several individuals from each of 96 F4-derived lines of population FAD00 were assayed using the GmFATB1a specific markers. Of the 98 lines tested, seven cases were observed in which the fatty acid composition phenotype of a line did not match the fapnc genotype. In these cases, the DNA from several individual plants of each line was newly extracted and the fapnc genotype was obtained for each plant to test for line contamination or fapnc segregation. A binomial test was used to test if the observed number of plants with Fapnc-geminate genotype in each F5:7 line was consistent with the hypothesis that the fapnc was segregating in the line. If the hypothesis was rejected, then the line was declared to be contaminated. In six cases out of seven, the lines were shown to be contaminated. In the remaining one case, the line was clearly segregating for fapnc. Of the 99 lines similarly assayed in population FAHH00, five cases were observed in which the phenotype of a line did not match the fapnc genotype. In three cases, the lines were shown to be contaminated, and in the remaining two cases the lines proved to be segregating for the fapnc allele. Therefore, in addition to following the low palmitic acid trait, use of the GmFATB1a specific markers also proved to be effective in detecting line contamination at a 5 to 10% level.

The number of observed homozygous lines for the fapnc allele was significantly less than expected for F4-derived populations. A Chi-square test (not shown) demonstrated significant segregation distortion for this locus in both populations. No significant difference in maturity was observed between fapnc fapnc and Fapnc-palmitate lines (data not shown); therefore, unintentional selection for later maturing lines during the inbreeding procedure cannot account for the segregation distortion. Only F4-derived lines that produced enough seed to be grown in replicated yield trials were used in this study. Therefore, if fapnc fapnc lines tend to yield less than normal FapncFapnc palmitate lines, as was observed by Rebetzke et al. (1998b, 2001), selection against low yielding lines may have been responsible for recovery of fewer than expected fapnc fapnc lines.

Phenotypic Evaluation of Populations

The mean palmitic acid content of seed oil from lines homozygous for the fapnc allele is 48.2 g kg$^{-1}$ in the Corsica × N97-3681-11 population and 54.3 g kg$^{-1}$ in the Brim × N97-3708-13 population (Table 1). These means are lower than the expected from lines homozygous only for the fapnc locus, such as N79-2077 (64 g kg$^{-1}$) or its derived line N79-2077-12, because of the independent segregation of the additional low palmitate locus fap1 in these populations (Burton et al., 1983, 1994). The mean palmitic acid content of lines heterozygous or homozygous for the presence of the FATB1a-312 or FATB1a-411 markers was 89.2 and 89.5 g kg$^{-1}$, in the two populations, respectively. These means are lower than the mean of Brim (110 g kg$^{-1}$ of 16:0) because in addition to the segregating fap1 locus, they also represent both the heterozygous and homozygous classes for the wild-type Fapnc allele. The differences between the two groups were highly significant, and they explained 70.4 and 61.8% of the genetic variation in palmitic acid oil seed content in the two populations, respectively. The amount of genetic variation in palmitic acid trait explained by this locus in these two populations is twice the amount explained by the major QTL detected in an F2 derived population segregating for the fapnc allele only (Li et al., 2002).

Lines homozygous for the fapnc allele also had significantly lower stearic acid content and significantly higher linoleic acid content in the seed oil in both populations (Table 1). Reduction in 18:0 suggests that the GmFATB1a encoded thioesterase also possesses some activity toward 18:0-ACP substrates, a result consistent with studies of 16:0-ACP thioesterase enzymes in other plant species (Jones et al., 1995; Voelker, 1996). The reduction in stearate content in lines homozygous for

Table 1. Palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid content means of seed oil of lines homozygous fapnc fapnc and of lines heterozygous or homozygous (Fapnc–) for the FATB1a allele, standard deviation of those means, difference between means and their significance, and the R^2 for the difference of those means for two F4-derived populations.

<table>
<thead>
<tr>
<th>Fapnc genotype</th>
<th>N</th>
<th>Palmitic acid</th>
<th>Stearic acid</th>
<th>Oleic acid</th>
<th>Linoleic acid</th>
<th>Linolenic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$fapnc fapnc$</td>
<td>22</td>
<td>48.2 (8.8)</td>
<td>28.0 (2.1)</td>
<td>291.2 (26.2)</td>
<td>572.8 (29.1)</td>
<td>54.8 (13.0)</td>
</tr>
<tr>
<td>$Fapnc$</td>
<td>78</td>
<td>89.2 (11.7)</td>
<td>30.9 (2.3)</td>
<td>292.7 (29.3)</td>
<td>535.8 (26.5)</td>
<td>52.8 (11.7)</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>$-41.0^{* * *}$</td>
<td>$-29^{* *}$</td>
<td>NS</td>
<td>37.0$^{* *}$</td>
<td>NS</td>
</tr>
<tr>
<td>R^2 (%)</td>
<td></td>
<td>70.4</td>
<td>22.7</td>
<td>0</td>
<td>24.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fapnc genotype</th>
<th>N</th>
<th>Palmitic acid</th>
<th>Stearic acid</th>
<th>Oleic acid</th>
<th>Linoleic acid</th>
<th>Linolenic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$fapnc fapnc$</td>
<td>25</td>
<td>54.3 (8.8)</td>
<td>30.5 (1.4)</td>
<td>311.4 (18.1)</td>
<td>543.6 (27.1)</td>
<td>56.4 (11.3)</td>
</tr>
<tr>
<td>$Fapnc$</td>
<td>75</td>
<td>89.5 (13.0)</td>
<td>33.1 (1.0)</td>
<td>297.0 (21.6)</td>
<td>525.6 (27.6)</td>
<td>56.1 (11.5)</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>$-35.2^{* * *}$</td>
<td>$-25^{* *}$</td>
<td>14.4$^{* *}$</td>
<td>18.0$^{* *}$</td>
<td>NS</td>
</tr>
<tr>
<td>R^2 (%)</td>
<td></td>
<td>61.8</td>
<td>50.4</td>
<td>8.5</td>
<td>7.6</td>
<td>0</td>
</tr>
</tbody>
</table>

$^{* *}$ significant $p < 0.01$.

$^{* * *}$ significant $p < 0.001$.

$^{* * *}$ significant at $p < 0.0001$.

\dagger N = number of lines with a specific Fapnc genotype.
the \(fap_{nc} \) was also observed in other studies (Rebetzke et al., 1998b, 2001).

The influence of the \(fap_{nc} \) allele on oleic acid content was less clear. Lines homozygous for the \(fap_{nc} \) allele had significantly higher oleic acid content in the Brim \(\times N97-3708-13 \) population, but not in the Corsica \(\times N97-3681-11 \) population. Increased oleic acid content has previously been described in populations segregating for the \(fap_{nc} \) allele (Rebetzke et al., 1998a, 2001). The inheritance of the \(fap_{nc} \) allele had no effect on the linolenic acid content in either population (Table 1). This result is contrary to that observed by Ndzana et al. (1994) and Rebetzke et al. (1998a), but the populations studied in this project differ from those previous reports in that our populations are also segregating for the low linolenic acid \(fap_{nc} \) allele. Previous studies have shown that the major low palmitic and low linolenic acid loci are independent from each other (Cherrak et al., 2003). It is possible that the populations used in previous studies by Ndzana et al. (1994) and Rebetzke et al. (1998a) were segregating for “normal” alleles that affect linolenate content but that are not allelic to \(fap_{nc} \) so the correlation between palmitate and linolenate would differ in those populations.

Although the \(fap_{nc} \) allele affects the composition of several fatty acids in the seed oil, the amount of variation explained differed considerably between populations (Table 1). For example, the \(fap_{nc} \) allele accounts for 50.4% of the genetic variation for stearic acid content in the Brim \(\times N97-3708-13 \) population but only 22.7% in the Corsica \(\times N97-3681-11 \) population. Similarly, the \(fap_{nc} \) allele accounts for 7.6% of the linoleic acid genetic variation in the Brim \(\times N97-3708-13 \) population and 24.6% in the Corsica \(\times N97-3681-11 \) population.

In summary, we have determined that lines homozygous for the \(fap_{nc} \) mutation have a deletion in the \(GmFATB1a \) gene that encodes a 16:0-ACP thioesterase. The \(GmFATB1a \) gene product also influences 18:0 production because lines that have a deletion in this gene have reduced palmitate and stearate in their oil. The production because lines that have a deletion in this gene encoded enzyme also has some activity on 18:0-ACP substrates. Segregation at the \(fap_{nc} \) locus explained 62 to 70% of the genotypic variation in palmitate content in two F4-derived populations using specific markers we developed that uniquely amplify the \(GmFATB1a \) isoform. Future research goals will be to map the \(GmFATB1a \) gene and compare its genomic location with the major QTL for palmitate observed by Li et al. (2002).

REFERENCES

Primomo, V. 2000. Inheritance and stability of palmitic acid alleles in soybeans (Glycine max L. Merr.). MS Thesis, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.

Supplemental Fig. S1. Genomic region of GmFATB1a and GmFATB1b showing the locations of gene-specific primer pairs. Sequences corresponding to exons are indicated in uppercase and intron sequences are shown in lowercase. Molecular marker FATB1a-312 is defined by primers corresponding to the sequences shown in bold type and FATB1b-314 is derived using primers corresponding to sequences that are both bolded and underlined. Marker FATB1a-411 is defined by primers corresponding to sequences in italicized type, and FATB1b-417 is generating using primers corresponding to sequences that are both italicized and underlined. Position 1 of the genomic sequences depicted corresponds to position 630 with reference to the start codons of the GmFATB1a and GmFATB1b cDNAs. The partial genomic sequences have been deposited in GenBank as Accession numbers DQ861997 (GmFATB1a) and DQ861998 (GmFATB1b).

Supplemental Fig. S1. Genomic region of GmFATB1a and GmFATB1b showing the locations of gene-specific primer pairs. Sequences corresponding to exons are indicated in uppercase and intron sequences are shown in lowercase. Molecular marker FATB1a-312 is defined by primers corresponding to the sequences shown in bold type and FATB1b-314 is derived using primers corresponding to sequences that are both bolded and underlined. Marker FATB1a-411 is defined by primers corresponding to sequences in italicized type, and FATB1b-417 is generating using primers corresponding to sequences that are both italicized and underlined. Position 1 of the genomic sequences depicted corresponds to position 630 with reference to the start codons of the GmFATB1a and GmFATB1b cDNAs. The partial genomic sequences have been deposited in GenBank as Accession numbers DQ861997 (GmFATB1a) and DQ861998 (GmFATB1b).