Enhanced oral availability/pheromonotropic activity of peptidase-resistant topical amphiphilic analogs of pyrokinin/PBAN insect neuropeptides

Ronald J. Nachman a,∗, Peter E.A. Teal b, Allison Strey a

a Areawide Pest Management Research Unit, Southern Plains Agricultural Research Center, USDA, ARS, College Station, TX 77845, USA
b Center for Medical, Agricultural and Veterinary Entomology, USDA, ARS, Gainesville, FL 32604, USA

Received 23 July 2002; accepted 7 August 2002

Abstract

The peptide bond between active core residues Pro and Arg is the primary site of susceptibility for the pyrokinin/PBAN neuropeptides to insect tissue-bound peptidases, and incorporation of modified Pro residues can enhance resistance to peptidase hydrolysis. An Hyp-containing amphiphilic analog (Hex-FT[Hyp]RLa) is shown to operate as a topically active tissue-bound peptidase-resistant analog of the pyrokinin/PBAN class of insect neuropeptides in adult Heliothis virescens moths. An Oic amphiphilic analog (Hex-FT[Oic]RLa) is ineffective topically, but proves to be a superior tissue-bound, peptidase-resistant pyrokinin/PBAN analog for oral administration, out-performing both the Hyp analog and the orally inactive natural hormone PBAN in the moths. The Oic analog is effective in penetrating an isolated, ligated foregut preparation, but less successful in transmigrating an isolated midgut preparation; whereas the opposite behavior is observed for the Hyp analog. The success of the Oic analog via oral administration may be related to its ability to effectively penetrate the foregut, thereby bypassing the hostile environment of the midgut region.

© 2002 Published by Elsevier Science Inc.

Keywords: Oral availability; Heliothis virescens; Amphiphilic analog

1. Introduction

Insect neuropeptides are important regulators of insect physiology and behavior [5,16] critical for survival and efficient propagation. As potent and specific as these molecular messengers are, neuropeptides in and of themselves are not suitable as pest insect control agents and/or tools for insect neuroendocrinologists. Direct use of neuropeptides for insect control is impractical because the insect cuticle contains an apolar lipid matrix that inhibits penetration of polar compounds like peptides and because the insect gut, hemolymph and membranes of a number of tissues contain peptidases that rapidly degrade the peptides [7,9]. The development of agonists and antagonists with enhanced peptidase-resistance and cuticle/gut penetrability can overcome these limitations and represents a key step in the development of control techniques employing analogs of insect neuropeptides capable of disrupting critical life processes.

We have addressed these problems separately through the development of pseudopeptide analogs of one class of insect neuropeptides (pyrokinin/PBAN class) with amphiphilic character, which confers an ability to penetrate the hydrophobic insect cuticle and simultaneously maintains the water solubility necessary for them to re-emerge in the insect circulatory system and reach their target receptor sites [2,12-14,17,19]. Peptidase-resistant analogs of two other classes of insect neuropeptides have been shown to demonstrate enhanced hemolymph residence time and in vivo biological activity [7,11]. However, analogs featuring both enhanced cuticle-penetration and peptidase-resistance have not yet been developed and will be addressed in this paper.

We have been developing analogs of neuropeptides that penetrate the insect cuticle for some time using the pyrokinin/PBAN class as models for analog development [2,12-14,17,19]. This class of neuropeptides regulates numerous physiological events in insects including hindgut and oviduct contraction in cockroaches and flies, induction of egg diapause, reddish coloration and melanization in moths, pupariation acceleration in flies, and sex pheromone biosynthesis in moths and some flies [9]. These neuropeptides range in length from 8–34 amino acids and share a common C-terminal...
pentapeptide Phe-Thr-Pro-Arg-Leu-NH₂ [1]. Analog design has involved the attachment of lipid moieties to the amino terminus of the aforementioned pentapeptide, which imparts amphiphilic character to the analogs, demonstrating both water solubility and cuticle penetrability [2,11–14,17,19].

In this study, we investigate the regions within the C-terminal pyrokinin pentapeptide core most susceptible to hydrolysis by tissue-bound peptidases and develop amphiphilic analogs incorporating residues that protect the susceptible regions. The pheromonotropic potency and ability to penetrate the cuticle of the tobacco budworm moth Heliothis virescens is then ascertained for the analogs. In addition, the oral availability of these peptidase-resistant, amphiphilic pyrokinins/PBAN analogs is probed by looking at direct passage of the analogs through isolated insect mid- and foregut, and finally measurement of pheromone production following oral ingestion in adult H. virescens moths.

2. Materials and methods

2.1. Peptide synthesis

The pyrokinin amphiphilic pseudopeptides were synthesized via condensation of the fatty acid component hexanoic acid (Aldrich Chemical Co., Milwaukee, WI) with the peptide–resin complexes Phe-Thr(OBu)-Hyp(OBu)-Arg(Pmc)-Leu-Rink Amide (Hyp, hydroxyproline; Oic, octa-tiary butyl; Pmc, pentamethylchroman-6-sulfonyl) and Phe-Thr(OBu)-Oic-Arg(Pmc)-Leu-Rink Amide (Oic, octa-hydriodole-2-carboxyl). Each peptide–resin was synthesized via FMC solid phase technology on an ABI 433A peptide synthesizer (Applied Biosystems, Foster City, CA) according to previously described procedures [11,14] using one equivalent of a 1,3-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole mixture in dimethylsulfoxide for 4 h according to previously described procedures [14]. Protected amino acid starting materials were purchased from Advanced Chemtech (Louisville, KY) or, in the case of Fmoc-Hyp(OBu)-OH and Fmoc-Oic-OH, from Bachem Americas (King of Prussia, PA). The pseudopeptide crude products were cleaved from the resin complex and deprotected by stirring with a mixture of trifluoroacetic acid (95%), anisole (5%), thioanisole (4%), and 1,2-ethanediol (1%) for 1 h at RT. The resin was filtered and volatile reagents were removed in vacuo on a Savant Speed Vac concentrator at 40 °C.

The products were purified on a Waters C18 Sep Pak cartridge and a Delta Pak C18 reverse-phase column at ambient temperature on a Waters Model 510 HPLC controlled with a Millennium 2000 chromatography manager system (Waters, Milford, MA) with detection at 214 nm. Solvent A = 0.1% aqueous trifluoroacetic acid (TFA); solvent B = 80% aqueous acetonitrile containing 0.1% TFA. Conditions: initial solvent consisting of 20% B was followed by a linear program to 100% B over 40 min; flow rate: 2 ml/min. Retention times on C18 column: 19.25 min; Hex-Phe-Thr-Hyp-Arg-Leu-NH₂ (901), 15.75 min; and Hex-Phe-Thr-Oic-Arg-Leu-NH₂ (904), 18.00 min. Two of the analogs required further purification on a Waters Protein Pak 125 column. Solvent A = 95% aqueous acetonitrile containing 0.01% TFA; solvent B = 50% aqueous acetonitrile containing 0.01% TFA. Conditions: 100% A isocratic for 4 min followed by linear program to 100% B over 8 min. Retention times on Protein Pak 125 column: Hex-Phe-Thr-Oic-Arg-Leu-NH₂ (904), 7.50 min. The pure peptides were analyzed and quantified via amino acid analysis. Each peptide sample was purged with N₂ and the peptide hydrolyzed with vapor phase HCl for 24 h at 105 °C. Precolumn derivatization and HPLC analysis was accomplished by the standard Pico Tag method supplied by Waters (Milford, MA). The observed amino acid ratios were as expected for each analog: Hex-Phe-Thr-Hyp-Arg-Leu-NH₂ (901), F[1.0], L[1.0], R[1.0], T[1.0]; and Hex-Phe-Thr-Oic-Arg-Leu-NH₂ (904), F[1.0], L[1.0], R[1.0], T[0.9]. Mass spectra were obtained on a Kratos Kompact Probe MALDI-TOF machine (Kratos Analytical, Ltd., Manchester, UK) using α-cyano-4-hydroxycinnamic acid as a matrix, recording the presence of the following molecular ions: Hex-Phe-Thr-Hyp-Arg-Leu-NH₂ (901), 747.1 [calculated MH⁺ = 747.53]; and Hex-Phe-Thr-Oic-Arg-Leu-NH₂ (904), 784.66 [calculated MH⁺ = 784.48].

2.2. Tissue-bound peptidase susceptibility assays

Malpighian tubules and/or hindguts were dissected from adult males of the corn earworm Heliothis zea (Heliothis premix artificial diet purchased from Stonefly Industries, Inc., Bryan, TX) and were incubated with 5 nmol peptide analog in 500 μl Mantisce saline [3] for 5 min up to 4 h. At the end of each incubation period, the tubules and/or hindguts were removed and 500 μl 15% aqueous TFA was added to the tube. The tubes were then vortexed and centrifuged, and the resulting supernatant was run on reversed phase HPLC Deltabond C18 ODS 250 × 4.6 mm, 5 μm, 300 A; solvent A: 0.1% TFA; solvent B: 80% acetonitrile in 0.1% TFA; flow rate 1 ml/min. The experiment was repeated a minimum of four times. Fractions were collected, dried, and analyzed on a Kratos Kompact Probe MALDI-TOF mass spectrometer (Kratos Analytical, Manchester, UK) to identify degradation products. Masses of naturally cleaved peptide fragments were compared with calculated masses of putative degradation products. The progress of the peptidase degradation was followed by monitoring the disappearance of the substrate peak.
2.3. Heliothis virescens

Heliothis virescens moths were obtained as pupae from North Carolina State University. Pupae were sexed and males discarded. Females were held in 30 cm3 plastic cages equipped with mesh sleeves to allow for removal of adults. Newly eclosed adults were placed in new cages daily and held in environmental chambers at 25°C, 65% relative humidity, a 14h:10h light:dark photoperiod, and provided with a 5% sucrose solution on cotton wicks. All bioassays were conducted using 3-day old females during the photophase, when endogenous levels of pheromone are low or undetectable [1]. Adult females of the American cockroach were obtained from a colony maintained at CMAVE and were held in 1l glass jars having screen tops. Cockroaches were provided with dry dog food and water and maintained under the same conditions as described for moths.

2.4. Pheromonotropic assay (injection)

Pheromonotropic assays were conducted using *Heliothis virescens* moths. We assessed the effect of the pseudopeptides in inducing sex pheromone biosynthesis by injecting different amounts of the pseudopeptides dissolved in 10μl of saline into females and comparing the amounts of pheromone produced to amounts produced when females were injected with 5 pmol/10μl water of PBAN or just saline [1]. After incubation, the sex pheromone glands were excised from the insects and extracted in 2μl of hexadecane containing 1 ng/μl of heptadecane and nonadecane as internal standards. The amount of pheromone in individual extracts was determined by quantifying the amount of (Z5,11-hexadecenal (Z5,11-16:AL) using capillary gas chromatography as described elsewhere [1]. The amount of pheromone in extracts obtained from insects injected with the pseudopeptide or with saline only were converted to a percentage of the mean amount present in extracts obtained from females injected with 5 pmol of PBAN for that day.

2.5. Pheromonotropic assay (topical)

We conducted assays to determine the effects of topical application of the pseudopeptides in inducing pheromonotropic responses. For these assays, we removed the scales on the surface of the abdomen by gently dabbing the ventral surface of the abdomen on cellulose adhesive tape. Moths were held immobile, ventral side up, by clamping the wings behind the back using smooth jawed alligator clips held in modeling clay. A 1-μl drop of H$_2$O containing between 1 and 1000 pmol of the analog was applied to the de-scaled portion of the abdomen [2], and the insects were incubated for various times. After incubation, the pheromone glands were excised, extracted, and the extracts analyzed as above. Control treatments for this experiment consisted of abdomens treated with only water and females injected with 5 pmol of PBAN and incubated for 1 h prior to excision and extraction of the pheromone glands.

2.6. Isolated cuticle penetration assay

Cuticle penetration assays were conducted using tissue obtained from the abdomen of female moths. Pieces of cuticle, ca. 0.4 cm2, were prepared as described elsewhere [17] and floated cell-side down in wells of ELISA plates (Corning, 96-well Easy Wash) that had been previously blocked with 1% gelatin in 10 mM sodium phosphate buffer containing 150 mM NaCl (pH 7.25) [17]. Either 904 or 904 (0.5 pmol) were applied to the center of the cuticle pieces in a 0.25 μl drop of H$_2$O using a 10-μl syringe and observed for 5 min to insure that the drops did not slide off. Lids were applied to the plates and the plates were placed on an orbital shaker operated at 80 rpm. One hour after application of the analogs, we carefully transferred the cuticle to new wells containing 300 μl of H$_2$O and incubation was continued. Cuticle was subsequently transferred to new wells at 2, 4, 6, 8, 21, and 24 h after application of the analogs. After incubation, 100 pmol of internal standard (6Pha-FTPRLa; 6Pha, 6-phenylhexanyl) were added and the contents of the wells were prepared for reversed phase liquid chromatographic analysis (see [17]). Samples were analyzed as described below.

2.7. Isolated fore- and midgut penetration assays

We studied penetration of the pseudopeptide analogs through the fore- and midgut of the American cockroach because the guts of adult moths are not amenable to study. Cockroaches were anesthetized by placing them in tepid water for 10 min. Then the entire alimentary canal was dissected out from the animal and carefully cleared of extraneous tissues under saline. The alimentary canals were transferred to fresh saline and the gut contents carefully flushed out using saline delivered using a 5-ml syringe filled with a 22-gauge nylon cannula. The fore- and midguts were removed and placed in separate saline filled dishes. Tight ligatures were attached to the posterior end of either gut sections using Teflon thread and a Teflon tube (22 gauge) affixed to the needle of a 25-μl gas tight syringe was inserted through the anterior opening of the gut prior to tightly affixing another ligature at the anterior end around the gut and Teflon tube. The anterior end of the preparation was elevated and 5 μl of saline containing 500 pmol/μl of either of the pseudopeptides or PBAN were injected into the gut lumen. The Teflon tube was removed and the ligature tightened. The preparation, resembling a sausage bound at both ends, was placed in a vial containing saline on a rotary mixer at 80 rpm for 2 min and then dipped in another saline bath for 1 min to remove pseudopeptide or peptide on the gut surface. The tissue was then placed in 200 μl of saline on the rotary mixer (80 rpm) and incubated for 4 h. After 4 h, the tissue was transferred to fresh saline and incubated for
an additional 20 h. Immediately after removal of tissue from incubation media, we added 200 µl of acetonitrile to the media and mixed well followed by addition of 400 µl of water containing 1 nmol of 6Pha-FTPRLa as an internal standard. Samples were stored at −20°C until analysis.

Samples were analyzed by reversed phase liquid chromatographic analysis (RPLC) using a LDC Biochrome quaternary gradient pump and LDC Spectro Monitor 3200 UV detector set at 210 nm and interfaced to a Nelson Analytical 3000 data acquisition and analysis system. A Macrosphere 300 C18 reversed phase column (250 mm × 2.1 mm i.d., 5 µm, Alltech) was used for all separations. Solvents used for all separations were H2O and MeCN each containing 0.1% TFA as the ion pair reagent. Samples were injected onto the column using a Rheodyne 7125 injector (250 µl loop) in 25% MeCN. The column was eluted after a 5 min equilibration period using a linear gradient from 25–75% MeCN over 90 min at a flow rate of 0.25 ml/min. Quantitation was accomplished by comparing the areas of the pseudopeptides or PBAN to that of the internal standard, 6Pha-FTPRLa. However, analysis of equimolar amounts of pseudopeptides, PBAN and the internal standard, 6Pha-FTPRLa, indicated that the compounds had different detector responses when analyzed with the UV detector set at 210 nm. Therefore, all values were corrected to reflect the differential detector response for the compounds.

Data were analyzed using a one-way ANOVA and Fishers Least Significant Difference test using NCSS7 Statistical software and by regression analysis using GraphPad Prism® software.

2.8. Pheromonotropic assay (oral)

Initially we conducted experiments to determine if PBAN or FTPRLamide would induce pheromonotropic responses when 5, 25, or 50 pmol were fed to female moths. These experiments were conducted as described by Raina et al. [15] except that we sampled pheromone glands both 1 and 2 h after the moths finished drinking. Controls for these experiments included females that were given only sugar water to drink and females that were injected with 5 pmol of PBAN and incubated for 1 h prior to excision and extraction of the pheromone gland. These studies failed to induce a pheromonotropic response. Therefore we developed an alternate method to deliver the test substances orally. In these studies we starved 2-day old females for 18 h. During the middle of the photophase of day 3, females were held immobile, dorsal side up, by clamping the wings behind the back with smooth jawed alligator clips and the clips were positioned in modeling clay so that the moths were at a 45° angle. The tops of 500 µl polypropylene microcentrifuge tubes were used to hold 30 µl of a 10% sucrose solution containing 50 pmol/µl of one or the other of the peptides or pseudopeptides. The tip of the centrifuge tube was positioned in modeling clay at an angle of 45° and females were moved close to the tube so that the front feet touched the cap of the tube. Females were induced to feed on the liquid by carefully placing the tip of the proboscis into the liquid using watchmakers forceps. After 15 min, the centrifuge tubes were removed and the alligator clips removed from the females who were placed in cages for various periods of time. After incubation, the pheromone glands were excised, extracted and analyzed as above. Only females who consumed all 30 µl of solution were sampled. Controls included equal numbers of females fed only 30 µl of sugar water and females who were injected with 5 pmol of PBAN and incubated for 1 h prior to extraction of the pheromone gland.

3. Results

3.1. Tissue-bound peptidase susceptibility assays

Fig. 1 illustrates the two modified Pro residues used in pseudopeptide analog sequences used in this study in
Fig. 2. Stability of the natural pyrokinin/PBAN analog LPK (\(H_17040\)), and the peptidase-resistant pyrokinin/PBAN analogs Hex-Phe-Thr-Hyp-Trp-Gly-NH\(_2\) (901) (\(H_17034\)) and Hex-Phe-Thr-Oic-Trp-Gly-NH\(_2\) (904) (\(H_17004\)) to hydrolysis by peptidases bound to corn earworm (\(H.\ zea\)) Malpighian tubule tissue. Measurement of the amount of remaining peptide was made by HPLC at 30, 60, and 120 min. The data points represent the means of at least three replicates.

3.2. Pheromonotropic assay (injected)

Injection of either of the two analogs induced production of pheromone in dose-dependent fashions (Table 1). However, the analog 901 was more potent than analog 904 and induced a maximal pheromonotropic response at a dose of 50 pmol (ED\(_{50}\) calculated \(=\) 9.0 pmol). Optimal production 1 h after injection of analog 904 required injection of at least 125 pmol (ED\(_{50}\) calculated \(=\) 113.5 pmol; Table 1). By comparison, the ED\(_{50}\) of PBAN and its C-terminal pentapeptide (FTPRLamide) is 1.0 pmol (maximum \(=\) 2.5 pmol) and 2.3 pmol (maximum \(=\) 10 pmol), respectively. The effects of the analogs in inducing pheromone production over time were conducted by injecting the minimal dose required to stimulate maximum production of pheromone in 1 h (50 pmol of 901 and 125 pmol of 904). The results showed that the analogs had an activity period of only 3 h with maximum production occurring between 2–3 h for both (data not shown).

3.3. Pheromonotropic assay (topical)

Topical application studies indicated that pheromone production could not be stimulated by application of as much as 1000 pmol of 904. However, application of 500 pmol of 901 induced production of 43±12.5 pmol of pheromone in 1 h. This was significantly greater than the 6.87 ± 1.9 ng present in extracts of glands obtained from control insects treated with water and 35% of the amount from extracts obtained 1 h after injection of PBAN. To determine if increased time after application of the analogs affected activity of the analogs we applied 500 pmol and sampled glands at 2–8 h after application. As indicated in Fig. 3, only 901 induced pheromone production, and optimal production was achieved 4 h after application.

Table 1

<table>
<thead>
<tr>
<th>Peptide analog</th>
<th>ED(_{50}) (pmol)</th>
<th>Maximal response (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex-Phe-Thr-[Hyp]-Arg-Leu-NH(_2) (901)</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td>Hex-Phe-Thr-[Oic]-Arg-Leu-NH(_2) (904)</td>
<td>114</td>
<td>125</td>
</tr>
<tr>
<td>Pro-Thr-[Pro]-Arg-Leu-NH(_2) (pyrokinin C-terminal pentapeptide)</td>
<td>2.3</td>
<td>10 (18)</td>
</tr>
<tr>
<td>Hex-PBAN</td>
<td>1.0</td>
<td>2.5 (1)</td>
</tr>
</tbody>
</table>

Maximal pheromone production relative to 5 pmol Hex-PBAN injected.

1. Hex, hexanoyl; Hyp, hydroxyproline; Oic, octahydroindole-2-carboxyl.
2. Hex-PBAN, LSDDMPATPADQEMYRGDFEQIDSRTKYPho-Ser-ProArg-Leu-NH\(_2\).
3.4. Isolated cuticle penetration assay

We suspected that a possible reason for the inability of the analog 904 to stimulate pheromone production when applied topically at 1000 pmol and that of 500 pmol of 901 was that the amounts of the analogs that penetrated the cuticle were too small. To address this we conducted cuticle penetration studies. The results of these studies showed that less 901 than 904 penetrated the cuticle at 1, 2, and 4 h after application but the amounts recovered at 6, 8, 21, and 24 h after application were the same for both analogs (Table 2). Therefore, differential rates of penetration of the two analogs cannot explain the differences in pheromonotropic activity. Rather, the differences in activities in the topical assays appear to stem from the differences in the potency of the two analogs (see Tables 1 and 2).

3.5. Isolated fore- and midgut penetration assays

To explore an alternate route for delivery of the analogs we studied penetration of the analogs through the fore- and midgut, reasoning that their enhanced peptidase-resistant and amphiphilic character might increase survival times in the digestive tract and penetration rates across the gut lumen wall, respectively. Unfortunately, the guts of adult moths are not of sufficient size to allow for practical delivery of peptide analog solutions into the lumen of dissected gut tissue and are too fragile. Therefore, we chose the fore- and midgut of adult cockroaches as tissues for study. The pyrokinins are known to have physiological effects on the gut of cockroaches. Significantly more of the analog 901 penetrated the midgut than did the analog 904 and the majority of 901 entered during the first 4 h (Fig. 4). In the isolated midgut preparation, 765 pmoles was recovered from the surrounding bath saline during 4-h incubation following the introduction of a total of 2.5 nmoles of the most potent of the analogs, 901, into the lumen of the midgut. Further incubation from 4 to 24 h yielded an additional 65 pmoles for a total 24 h recovery of 830 pmoles (33%; Fig. 4). A smaller total of about 300 pmoles (12%) of 904 was recovered over the 24-h incubation period. No statistically significant amounts of PBAN were recovered from midgut preparations over the 24-h incubation period, indicating that either the great majority had been degraded by peptidases in the midgut and/or was unable to penetrate through the lumen wall.

While less 904 than 901 penetrated the midgut, a greater amount of the more hydrophobic 904 penetrated the foregut preparation over 24 h (Fig. 5). PBAN did not penetrate the foregut. As can be visualized in Fig. 5, 115 and 55 pmoles, respectively, of 901 were recovered at the 0–4 h and 4–24 h

<table>
<thead>
<tr>
<th>Time after application (h)</th>
<th>Total amount 901 recovered (pmol; ±S.E.)</th>
<th>Total amount 904 recovered (pmol; ±S.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0 (0.9) A</td>
<td>20 (2.0) A</td>
</tr>
<tr>
<td>2</td>
<td>6.0 (1.9) A</td>
<td>24.5 (2.2) B</td>
</tr>
<tr>
<td>4</td>
<td>14.4 (1.3) A</td>
<td>25.2 (1.8) B</td>
</tr>
<tr>
<td>6</td>
<td>32.6 (4.0) A</td>
<td>29.6 (1.6) A</td>
</tr>
<tr>
<td>8</td>
<td>34 (13.6) A</td>
<td>31 (11.6) A</td>
</tr>
<tr>
<td>21</td>
<td>36 (7.0) A</td>
<td>39.7 (5.0) A</td>
</tr>
<tr>
<td>24</td>
<td>38 (3.0) A</td>
<td>40.0 (3.0) A</td>
</tr>
</tbody>
</table>

Means in each row having the same superscript letter are not different in a t-test at P = 0.05 (N = 6/time for each analog).

* Numbers represent the total amounts for each time period.
time periods for a rather small 24 h total of 170 pmoles (7%) of 1 nmole introduced into the lumen of the midgut preparation. However, 370 and 440 pmoles, respectively, of 904 were recovered at the 0–4 h and 4–24 h time periods, respectively, for a 24 h total of 810 pmoles (32%; Fig. 5).

3.6. Pheromonotropic assay (oral)

Initial studies were conducted on the oral activity of both PBAN and the C-terminal pyrokinin pentapeptide, FTPRlamide. Starved moths were fed 50 pmol/µl sugar solutions of PBAN or the C-terminal pentapeptide for 15 min. Glands from females fed PBAN or FTPRlamide contained only 4.81 ± 0.61 ng (n = 5) and 7.18 ± 0.81 ng (n = 5), respectively after 2 h. These results indicated that neither PBAN nor the pentapeptide, FTPRlamide, induced pheromone production.

Following ingestion of a sugar solution containing 50 pmol/µl of either 901 or 904 for a period of 15 min, the pheromone production in starved female moths was monitored at 1.5, 3, 4, and 6 h post-feeding (Fig. 6). While control moths fed the native neuropeptide PBAN showed no significant pheromone production, those fed either 901 or 904 did show significant production at certain specific time intervals. The Hyp-containing analog 901 induced the release of a statistically significant 30% of the maximal titer produced by injected PBAN (PBAN maximum = 90–100 ng) at 1.5 h, but not at 3, 4, or 6 h post-feeding. Statistically significant elevated pheromone titers were also observed for 1.5, 3, and 4 h post-feeding of the Oic-containing analog 904 (Fig. 6). The analog 904 induced a statistically significant 58% of the maximal pheromone production for injected PBAN at 3 h post-feeding. The pheromone release spike for 901 occurred at 1.5 h, whereas that of 904 occurred at 3 h, indicative of a more pronounced time-release effect for the more hydrophobic analog 904 (Fig. 6).

4. Discussion

The study began with an investigation of the primary site within the C-terminal pentapeptide active core region of the pyrokinin/PBAN class of neuropeptides susceptible to tissue-bound peptidases. Incubation of the natural pyrokinin/PBAN peptide LPK (pQTSFTPRLamide) with either Malpighian tubule or hindgut tissue of the corn earworm moth H. zea led to rapid degradation. All of the LPK was hydrolyzed within a 30-min period. MALDI-TOF mass spectral analysis of the hydrolysis products separated by reverse-phase HPLC indicated that the primary hydrolysis...
The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. residues that could provide a steric and/or physicochem- adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over

In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases. In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases.

In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases. In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases.

In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases.

In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases.

In order to fortify the susceptible peptide bond within the core region, the adjacent Pro position was replaced with several modified residues that could provide a steric and/or physicochemical barrier to approach of the tissue-bound peptidases.

The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases.

The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases.

The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases.

The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases.

The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases. The Pro residue is an integral part of the beta turn over ical barrier to approach of the tissue-bound peptidases.
production was achieved at 3 h, with a highly significant
titer of almost 60% of that of injected PBAN. The shift in
the pheromone spike from 1.5 h for 901 to 3 h post-feeding
for 904 is consistent with the greater time-release effect
observed for the direct penetration of the more hydropho-
bic 904 in both the ligated fore- and hindgut preparations.
Although 904 is less potent than 901 and proves to be a
poor topical analog, it is clearly superior when administered
orally. Analog 901 was effective at penetrating the ligated
midgut but ineffective at penetrating the foregut prepara-
tion. Conversely, 904 was ineffective at penetrating the lig-
ated midgut, but very effective at penetrating the foregut
preparation. The greater effectiveness of 904 as an orally
active analog may therefore be directly related to its abil-
ity to effectively penetrate the foregut, bypassing the hos-
tile, peptidase-rich environment of the midgut. The results
also suggest that the foregut can serve as a reservoir for the
time-release delivery of neuropeptide analogs in pest insects.

In conclusion, fortification of the peptide bond between
active core residues Pro and Arg by incorporating mod-
ified Pro analogs can enhance resistance to tissue-bound
peptides of insects. The amphiphilic Hyp analog 901 has
been shown to operate as a topically active tissue-bound
peptidase-resistant analog of the pyrokinin/PBAN class of
insect neuropeptides in adult H. virescens moths. The Oic
analog 904 is ineffective topically, but proves to be a su-
perior tissue-bound, peptidase-resistant pyrokinin/PBAN
analog for oral administration; clearly outperforming the
orally active native hormone PBAN in adult H. virescens
moths. The success of the analog 904 via oral administra-
tion may be a result of its ability to effectively penetrate
(in time-release fashion) the foregut with its cuticular
component, thereby bypassing the hostile environment of
the midgut. The design of peptidase-resistant, amphiphilic
analog capable of effective foregut penetration can pro-
vide an effective route to the development of orally active
agonist/antagonist analogs of insect neuropeptides capable
of disrupting critical neuropeptide-regulated physiological
processes in pest insects.

Acknowledgments

We wish to thank Nan Pryor and David Rigoeta (College
Station, TX) for excellent technical assistance.

References

[1] Abernathy RL, Nachman RJ, Teal PEA, Yamashita O, Tumlinson
JH. Pheromonotropic activity of naturally-occurring pyrokinin
insect neuropeptides (FXPRLamide) in Helicoverpa zea Peptides
[2] Abernathy RL, Teal PEA, Meredith JA, Nachman RJ. Induction of
moth sex pheromone production by topical application of an
amphiphilic pseudopeptide mimic of pheromonomotropc neuropep-
[5] Cade G. The explosion of structural information on insect
neuropeptides. In: Her W, Kirby GW, Moore RE, Steglic W, Yam
[6] Holman GM, Cook BJ, Nachman RJ. Primary structure and synthesis
of a blocked myotropic neuropeptide isolated from the cockroach,
33.
[7] Nachman RJ, Garavde CS, Tohe SS. Hemolymph and tissue-bound
peptide-resistant analogs of the insect allatostatin. Peptides
[8] Nachman RJ, Kaniyoshi H, Roberts VA, Holman GM, Suzuki A.
Active conformation of the pyrokinin/PBAN neuropeptide family
for pheromone biosynthesis in the silkworm. Biochem Biophys Res
[9] Nachman RJ, Radel PA, Abernathy RL, Teal PEA, Holman GM.
Mimetic analog development of the insect pyrokinin/PBAN/diapause
induction (FXPRLamide) neuropeptide family. In: Suzuki A,
Kataoka H, Matsumoto S, editors. Molecular mechanisms of insect
metamorphosis and diapause. Tokyo: Industrial Publishing and
[10] Nachman RJ, Roberts VA, Dysson HE, Holman GM, Tainer JA. Active
conformation of an insect neuropeptide family. Proc Natl Acad Sci
al. Enhanced in vivo activity of peptidase-resistant analogs of the
[12] Nachman RJ, Teal PEA. Amphiphilic mimics of pyrokinin/PBAN
neuropeptides that induce prolonged pheromonotopic activity
following topical application to a moth. In: Konopinska D,
Goldoworthy G, Nachman RJ, Nawrot J, Orchard J, Rossinski G,
editors. Insects. chemical, physiological and environmental aspects
pheromonotrophic/myotropic activity of a carboxyl pseudotetrapep-
tide analog of the insect pyrokinin/PBAN neuropeptide family
administered via injection and topical application. Peptides 1996;17:
747–52.
[14] Nachman RJ, Teal PEA, Uyvary I. Comparative topical phero-
monotrophic activity of insect pyrokinin/PBAN amphiphilic analogs
incorporating different fatty and/or cholic acid components. Peptides
[15] Rama AK, Rafael A, Kingan TG. Pheromonotrophic activity of orally
administered PBAN and its analogs in Helicoverpa zea J Insect
Structure, function and distribution of insect myotropic peptides.
In: Davey KG, Peter RE, Tohe SS, editors. Perspectives in com-
parative endocrinology. Ottawa: National Research Council of Canada;
[17] Teal PEA, Meredith JA, Nachman RJ. Comparison of rates of
penetration through insect cuticle of amphiphilic analogs of insect
[18] Teal PEA, Meredith JA, Nachman RJ. Development of amphiphilic
mimics of insect neuropeptides for pest control. In: Sandman CA,
Stead PL, Beckworth B, Chronwall BM, Flynn PW, Nachman RJ,
editors. Neuropeptides structure and function in biology and behavior,
p. 348–60.
[19] Teal PEA, Nachman RJ. Prolonged pheromonotrophic activity of
peptide mimics of insect pyrokinin neuropeptides after topical