Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance

Song Hee Han, Chul Hong Kim, Jang Hoon Lee, Ju Yeon Park, Song Mi Cho, Seur Kee Park, Kil Yong Kim, Hari B. Krishnan & Young Cheol Kim

Correspondence: Young Cheol Kim, Department of Plant Biotechnology and Biotechnology Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea. Tel.: +82 62 5302071; fax: +82 62 5300207; e-mail: yckimyc@chonnam.ac.kr

Received 24 October 2007; accepted 4 February 2008. First published online 18 March 2008.

DOI: 10.1111/j.1574-6968.2008.01120.x

Editor: Skorn Mongkolsuk

Keywords
antifungal activity; induced systemic resistance; phosphate solubilization; pyrroloquinoline quinone.

Abstract
Enterobacter intermedium 60-2G, a phosphate solubilizing bacterium, has the ability to induce systemic resistance in plants against soft rot pathogen Erwinia carotovora. Glucose dehydrogenase, an enzyme that utilizes pyrroloquinoline quinone (PQQ) as a cofactor, is required for the synthesis of gluconic acid by E. intermedium 60-2G. Here, we report that the pqqA and pqqB genes are required for phosphate solubilization and induced systemic resistance against a soft rot pathogen in tobacco. Mutations in either the pqqA or pqqB gene abolished the production of 2-ketogluconic acid and eliminated the ability of E. intermedium to solubilize hydroxyapatite. Addition of gluconic acid to the growth media restored the ability of the pqqA mutant to produce 2-ketogluconic acid. Interestingly, both pqqA and pqqB mutants of E. intermedium lost their ability to inhibit the growth of the rice pathogen Magnaporthe grisea KI-409. Additionally, induced systemic resistance against the soft rot pathogen was attenuated in the pqq mutants. These functions were restored by complementation with the wild-type pqq gene cluster. Our findings suggest that PQQ plays an important function in beneficial traits including phosphate solubilization, antifungal activity, and induced systemic resistance of E. intermedium, possibly by acting as a cofactor for several enzymes including glucose dehydrogenase.

Introduction

Root colonization by certain soil microorganisms enhances plant growth and induces systemic resistance against plant disease (Bloomberg & Lugtenberg, 2001). Certain strains of Rhizobium, Pseudomonas, and Bacillus species have the ability to solubilize mineral phosphate into forms that can be utilized by the plants for their growth and development (Hilda and Reynaldo, 1999; Cho et al., 2003). Earlier, we isolated a bacterium, Enterobacter intermedium 60-2G, from grass rhizosphere that exhibited a strong ability to solubilize phosphate (Kim et al., 2002a). This bacterium was also found to promote plant growth and suppress plant disease due to induction of systemic resistance (Kim et al., 2002b). Enterobacter intermedium 60-2G produced an antibiotic compound (3-methylthiopropanoic acid) that is presumably involved in inhibiting the growth of plant pathogenic fungi (Kim et al., 2003b). However, the molecular mechanisms and the microbial determinants involved in plant growth, induced systemic resistance, and antifungal activity of E. intermedium are largely unknown.

Phosphorus is essential for plant growth and development. However, in natural soils, this essential micronutrient occurs as insoluble complexes or organically bound mainly as phytates (Altmare et al., 1999). Certain soil microorganisms possess the ability to solubilize these insoluble forms (Goldstein, 1995) via the production of organic acids such as citric acid and gluconic acid (Asea et al., 1988). Gluconic acid is generated by the direct oxidation of glucose that is mediated by a membrane bound glucose dehydrogenase. Subsequently, gluconic acid is enzymatically converted to 2-ketogluconic acid and 2, 5-diketogluconic acid (Oljive & Kok, 1979; Goldstein, 1995). The 2-ketogluconic acid (pKa = 2.66) is more effective than gluconic acid (pKa = 3.41) in solubilizing phosphate (Kim et al., 2002a).

The glucose dehydrogenases of Acinetobacter calcoaceticus (Goosen et al., 1989) and Klebsiella pneumoniae (Meulenberg et al., 1989) have been studied extensively. Gluconic acid is converted to 2-ketogluconic acid by glucose dehydrogenase, which utilizes pyrroloquinoline quinone (PQQ) as a cofactor.

The glucose dehydrogenases of Acinetobacter calcoaceticus (Goosen et al., 1989) and Klebsiella pneumoniae (Meulenberg et al., 1989) have been studied extensively. Gluconic acid is converted to 2-ketogluconic acid by glucose dehydrogenase, which utilizes pyrroloquinoline quinone (PQQ) as a cofactor.
et al., 1992) require pyrroloquinoline quinone (PQQ) as a redox cofactor for activity. PQQ is also the cofactor for an alcohol dehydrogenase in Pseudomonas testosteron (Duine & Jongejan, 1989). In K. pneumoniae and Rahnella aquatilis (Meulenberg et al., 1992; Kim et al., 1998), the genes encoding pqq are encoded by an operon consisting of six genes (pqqA, B, C, D, E, and F); the functions of each of these genes have yet to be completely elucidated. Sequence analysis of the pqq operon of E. intermedium 60-2G revealed a similar organization of six genes (Kim et al., 2003a). The pqqA gene product provides precursors for PQQ biosynthesis, and the pqqB gene product is thought to facilitate the transport of PQQ across the cytoplasmic membrane into the periplasm, by modification of an existing transport system (Velterop et al., 1995). In Escherichia coli and Rhizobium, pqq mutants produce the apo-glucose dehydrogenase enzyme and do not secrete gluconic acid (Van Schie et al., 1987; Boiardi et al., 1996).

We speculate that the phosphate-solubilizing activity of E. intermedium 60-2G is correlated with the production of organic acids, involving processes requiring PQQ as an essential cofactor for the initial enzyme, glucose dehydrogenase. In this paper, we report on the functional role of pqqA and B genes in production of 2-ketogluconic acid from glucose, phosphate solubilization, inhibition of fungal phytopathogens, and induction of systemic resistance. These results indicated that PQQ is essential for the beneficial plant effects of E. intermedium 60-2G.

Materials and methods

Bacterial strains, plasmids, and growth conditions

Escherichia coli and E. intermedium 60-2G (Kim et al., 2002a) were grown on Luria–Bertani (LB) agar medium or LB broth in a culture with shaking (Sambrook et al., 1989) at 37 °C and 30 °C, respectively. Then appropriate filter-sterilized antibiotics were added at the following concentrations: ampicillin 100 μg mL⁻¹, kanamycin 50 μg mL⁻¹, spectinomycin 50 μg mL⁻¹, and tetracycline 25 μg mL⁻¹. Hydroxyapatite agar or broth medium (HY medium) contained the following: glucose 10 g, MgSO₄ 0.2 g, NaCl 1 g, CaCl₂ 2H₂O 0.2 g, NH₄NO₃ 1.5 g, yeast extract 0.5 g, and hydroxyapatite 4 g per 1 L of distilled water. Potato dextrose agar (PDA) (Difco, Detroit, MI) was used for growth of the rice blast fungus, Magnaporthe grisea, obtained from Korean Agricultural Culture Collection (KACC) (Suwon, RDA, Korea).

Construction of the E. intermedium pqqA and pqqB mutants

DNA manipulations for cloning and subcloning were carried out as described by Ausubel et al. (1989) and Sambrook et al. (1989). The genomic DNA of E. intermedium was isolated by the CTAB/NaCl method (Ausubel et al., 1989). The plasmid DNA was isolated with CTAB (Del Sal et al., 1989) and the alkaline lysis method (Sambrook et al., 1989). The pqqA and pqqB genes cloned into the p7HB5 plasmid (Kim et al., 2003a) were disrupted by the insertion of a 0.9-kb Smal fragment into unique PshAI and HpaI sites within the pqqA and pqqB genes. The 0.9-kb Smal fragment harbored a kanamycin-resistance gene from the pRL648 plasmid (Elhai & Wolk, 1988). The chromosomal pqq genes in E. intermedium 60-2G were exchanged for the disrupted versions, as described previously (Miller et al., 1997) using the pCPP54 exchange vector (TcR). Three putative mutants were selected on the basis of their resistance to kanamycin and sensitivity to tetracycline, on plate medium containing 5% sucrose. Southern blot analysis was performed by fusing a digoxigenin-labeled pqqDE gene probe to confirm the disruption of the pqqA or pqqB genes. Two oligonucleotides were used for PCR primers [forward primer (5'-GGCT TGC TGG CCG AAC TGA CTT-3') and the reverse primer (5'-GCG CCG AAC AAG CAT TAT TAG-3')] were designed as exact matches to published sequence of pqqD and pqqE in R. aquatilis. (GenBank AF007584). PCR amplification conditions were as described previously (Kim et al., 2003a). The PCR products were randomly-labeled with digoxigenin and used as a probe to detect pqq genes from E. intermedium. Hybridization analysis was performed using the nonradioactive Genius system (Roche Molecular Biochemicals, Mannheim, Germany) with the digoxigenin-labeled probes.

To complement the pqq mutants, the pqq genes of E. intermedium were cloned into the broad host range vectors, pCPP45 and pCPP46, both of which harbor tetracycline resistance genes. The 13-kb EcoRI fragment containing the complete pqq operon (pqqA to pqqF) in pCSW7 (Kim et al., 2003a) was inserted into pCPP45 (p45E13), and the 5.0-kb HindIII/BamHI fragment containing pqqA to pqqE was inserted into pCPP46 (p46HB5). The resulting broad host range vectors containing the pqq operon from E. intermedium were transferred to the pqqA or pqqB mutants by tri-parental mating using pRK2073 as a helper plasmid. Tetracycline-resistant transconjugants were evaluated for the presence of the plasmid and solubilization of insoluble phosphate.

Analysis of solubilization of insoluble phosphate and production of organic acids

Phosphate-solubilizing bacteria were selected based on their ability to produce clear zones around the bacterial colonies after 3 days of incubation on standard agar plates containing 0.4% hydroxyapatite (HY medium) (Kim et al., 2002a). Enterobacter intermedium pqq mutants, the complemented E. intermedium pqq mutants and the E. intermedium wild-type strains were grown in HY broth medium. Bacterial
growth, pH of the medium, phosphorus concentrations, and levels of organic acid were measured after 0, 12, 24, and 48 h growth on a reciprocal shaker (200 r.p.m.) at 30 °C. One hundred milliliters of hydroxyapatite broth was dispensed into each of the 250-mL bottles, followed by inoculation with 10 μL of each bacterial culture (10⁶ CFU mL⁻¹) grown in LB broth for 24 h at 30 °C. Changes in medium pH were measured with a pH meter equipped with a glass electrode. The soluble phosphate concentration of the culture filtrates was determined using a spectrophotometric method at 660 nm (Olsen & Sommers, 1982). Organic acids were identified and quantified by HPLC analysis as described previously (Kim et al., 2002a) using a Shimazu SPD-10A HPLC system (Shimazu, Tokyo, Japan) with a UV-Vis detector at 210 nm and a RS pak KC-811 column manufactured by Shodex (Shoko Co., Tokyo, Japan).

Growth determination

Bacterial growth and pH change of the medium were measured in potato dextrose broth (PDB) medium (Difco Inc., Detroit, MI). Cultures of *E. intermedium* 60-2G strains, previously grown on LB for 48 h, were incubated at 28 °C on PDB for 24 h. Culturable cell density was determined by plating serial dilutions of the culture on LB agar plates and assessment of CFU after 3 days growth at 28 °C.

Induction of systemic resistance and fungal inhibition assay

Induction of systemic resistance was examined in tobacco with *Erwinia carotovora* ssp. *carotovora* SCCI as the challenging pathogen, as described previously (Han et al., 2006). Tobacco cv. Xanthi seeds were surface-sterilized with 3% (w/v) sodium hypochlorite and washed thoroughly with sterile distilled water. Individual seeds were placed in 12-well microtiter plates (SPL Inc., Republic of Korea) containing 1 mL of 0.5% (w/v) Murashige and Skoog salt (MS) agar supplemented with 3% sucrose in each well. Two weeks after seeding, 10 μL of bacterial suspensions (1 × 10⁸ CFU mL⁻¹) of the wild-type, the pqqa mutants, and the complemented pqqa mutants were applied onto the roots. One week after application of bacterial treatments, the tobacco plants were challenged with *E. carotovora* ssp. *carotovora* SCCI by pipetting 2 μL of the pathogen (1 × 10⁸ CFU mL⁻¹) onto a leaf. One to two days after pathogen challenge, soft-rot disease was rated by counting the number of symptomatic leaves (leaves that showed wilting and water soaking) and expressed as a percentage of all examined leaves. The control plants were treated with 2 μL sterile water. Three independent experiments were performed and each treatment included at least 21 plants.

Fungal antagonism of the *E. intermedium* strains was assessed with the rice blast fungus *M. grisea*. The fungus was inoculated in the centers of PDA agar plates followed by 5 days of incubation at room temperature, until the fungal mycelium covered 30% of the plate. Aliquots (10 μL) of *E. intermedium* strains (10⁶ CFU mL⁻¹) were then spotted around the fungal mycelia. After incubation for an additional 2–3 days, the inhibition zone surrounding the bacterial spots was measured.

Statistical analysis

Data were analyzed by ANOVA using SPSS 12.0K for Windows software (SPSS Institute, Korea). The significance of the effects of bacterial treatment was determined by Duncan’s multiple range test (P = 0.05).

Results and discussion

Pqqa mutants are impaired in phosphate solubilization

In order to examine the role of *pqqa* genes in phosphate solubilization, we first constructed mutants in which *pqqa* or *pqqb* genes were individually inactivated. Southern blot analysis of genomic DNA isolated from the *pqqa* mutants revealed that the sizes of the hybridizing fragments were about 1 kb bigger than the wild type due to insertion of the kanamycin gene in the *pqqa* and *pqqb* coding regions (data not shown). The ability of the *pqqa* mutant to solubilize mineral phosphate was evaluated using the hydroxyapatite plate assay. After a 3-day incubation at 30 °C, a clear zone around the wild-type *E. intermedium* was seen (Fig. 1). The *pqqa* mutant did not solubilize hydroxyapatite as evidenced by the lack of clear zones around the colonies (Fig. 1).

![Fig. 1. Effect of pqqa mutations on phosphate solubilization. B1, Enterobacter intermedium 60-2G wild-type; pqqa – , pqqa mutant; Compl. pqqa – . pqqa containing the pqqa operon of E. intermedium. Phosphate solubilization activity with the pqqb mutant and the complemented mutant gave results similar to those observed with the pqqa mutant (data not shown).](image-url)
Complementation with the wild-type operon restored mineralized phosphate solubilization ability to the *pqqA* mutant (Fig. 1), confirming that *pqqA* was required for the solubilization of phosphate by *E. intermedium*. Similarly, the *pqqB* mutant was unable to solubilize hydroxyapatite (results not shown).

Previous studies have demonstrated the existence of a direct correlation between the phosphate-solubilizing ability of bacteria and the acidification of growth media due to release of organic acids, including gluconic acid (Van Schie *et al*., 1987; Illmer *et al*., 1995). Therefore, we assessed the changes in pH when *E. intermedium* 60-2G, the *pqq* mutants, and the complemented mutants were grown in liquid medium containing hydroxyapatite. After 36 h, the pH values of culture media in which *E. intermedium* 60-2G and the complemented *E. intermedium* *pqq* mutants were grown dropped to 4.0. The reduction in the pH of the culture medium was correlated with increased levels of soluble phosphate (Fig. 2b). In contrast, the pH of the culture media in which the *pqqA* mutant or the *pqqA* mutant carrying the empty vector was grown remained at 5.0 even after 48 h growth (Fig. 2a). The amount of soluble phosphate measured from the culture media in which wild-type *E. intermedium* and the complemented mutants were grown was c. 1600 p.p.m. The soluble phosphate levels in the culture media in which *pqq* mutants or the mutants harboring empty vectors were grown remained at < 200 p.p.m. (Fig. 1b).

The acidification of culture media by *E. intermedium* 60-2G was correlated with the accumulation of gluconic acid and 2-ketogluconic acid (Kim *et al*., 2002a). In the case of wild-type *E. intermedium*, the concentration of 2-ketogluconic acid reached a concentration of 12 000 p.p.m. after 48 h growth, whereas no 2-ketogluconic acid was detected in culture filtrates of the *pqqA* mutant (Fig. 3a). The amount of 2-ketogluconic acid in the complemented *pqqA* mutant was similar to that of the wild-type strain (data not shown). Interestingly, the addition of gluconic acid to the growth media enabled the *pqqA* mutant to produce 2-ketogluconic acid (Fig. 3b), suggesting the presence of a functional gluconate dehydrogenase in *pqqA* mutant. The production of 2-ketogluconic acid reached a maximal level at 24 h postinoculation in both the wild-type and *pqqA* mutant strain when gluconic acid was supplied as a sole carbon source (Fig. 3b). These data indicate that the *pqq* genes of *E. intermedium* 60-2G are involved in the generation of organic acids which mediates the acidification of the culture media and solubilization of insoluble phosphate (Hilda & Reyandlo, 1999).

Phenotypes of *E. intermedium* *pqq* mutants

In our previous study, we demonstrated that *E. intermedium* inhibited the growth of *M. grisea* (Kim *et al*., 2002b). In order to examine if *pqq* genes play any role in antifungal activity, we examined the ability of *pqq* mutants to inhibit the growth of *M. grisea* in a plate assay (Fig. 4). The wild-type and complemented *pqq* mutants inhibited the mycelial growth of the blast fungus, whereas no antifungal activity was evidenced by the *pqq* mutants (Fig. 4). Cucumber plants grown in presence of wild-type *E. intermedium* 60-2G in a soil-less media containing rock phosphate as the sole phosphate source showed enhanced growth when compared with plants grown in the absence of rock phosphate. Interestingly, this growth promotion was not observed when *pqqA* or *pqqB* mutants of *E. intermedium* 60-2G were used (data not shown). A possible explanation of this loss in the

![Fig. 2](image)

Fig. 2. Changes in the pH of culture filtrates and solubilization of insoluble phosphate of the wild type and *pqqA* mutant of *Enterobacter intermedium*. Cells were grown on glucose minimal medium supplemented with 0.4% hydroxyapatite at 30 °C. The pH of the culture filtrate and soluble phosphate concentration were determined at 12 h intervals. Medium; noninoculated HY medium; B1, *E. intermedium* 60-2G; *pqqA* mutant; Compl. *pqqA* mutant containing a full length of *pqq* gene cluster of *E. intermedium*. Vector+*pqqA* mutant containing a broad host range vector pCPP45. Vertical bars represent the SEs of three independent experiments. Treatment with the *pqqB* mutant gave results similar to those observed with the *pqqA* mutant (data not shown).
inhibition of fungal growth and plant growth promotion might involve less acid production by the \textit{pqq} mutants. Another possible explanation is that the organic acid itself may have antifungal activity as has been suggested by Kaur \textit{et al.} (2006). However, gluconic acid itself did not have any antifungal activity in our study (data not shown). We have shown previously that expression of the \textit{pqq} genes of \textit{Serratia marcescens} W1 in \textit{E. coli} resulted in antifungal activity against a variety of phytopathogenic fungi (Kim \textit{et al.}, 2006). We have also demonstrated that \textit{E. intermedium} 60-2G produces 3-methylpropanoic acid, an antibiotic that has antifungal activity. Therefore, it is possible that PQQ may be required for the production of the antifungal 3-methylpropanoic acid (Kim \textit{et al.}, 2003b). However, the production of 3-methylpropanoic acid was not altered by the \textit{pqq} mutations (data not shown) indicating that \textit{pqqA} and \textit{pqqB} genes are not directly involved in the synthesis of 3-methylpropanoic acid.

Induced systemic resistance

Induced systemic resistance was observed when the tobacco roots were colonized with the wild-type and the complemented \textit{pqq} mutants (Fig. 6). \textit{Enterobacter intermedium} \textit{pqqA} mutant, however, was unable to induce systemic resistance as evidenced by high disease incidence (Fig. 6). However, gluconic acid itself did not show induction of systemic resistance against soft-rot disease (data not shown). Our results suggest that functional \textit{pqq} genes are required for induced systemic resistance against soft rot in tobacco. Studies with another plant growth-promoting rhizobacterium, \textit{Pseudomonas polymyxa} E681, have demonstrated that an enzyme in PQQ synthesis is involved in the plant–rhizobacterium interaction, particularly under conditions in...
which phosphorous is limiting (Seul et al., 2007). We are currently attempting to determine the manner in which PQQ is involved in induced resistance.

In summary, PQQ, a cofactor for several dehydrogenases, including glucose dehydrogenase, was involved in a variety of beneficial functions of Enterobacter intermedium 60-2G including the solubilization of insoluble phosphorus, the production of antifungal activity, and the induction of systemic resistance. All of the beneficial functions negated by mutations of pqq genes in Enterobacter intermedium 60-2G, were restored by genetic complementation. Solubilization of insoluble phosphorus activity was restored by addition of gluconic acid the culture medium. However, gluconic acid itself did not have antifungal activity and did not induce systemic resistance. Our findings indicate that PQQ is involved either directly or indirectly in various metabolic pathways that control the beneficial traits of Enterobacter intermedium 60-2G.

Acknowledgements

This research was supported by a grant (Code #20050401034716) from the BioGreen 21 program, Rural Development Administration, Republic of Korea.

References

organic acid production and effect on common bean growth

precipitation method: a common mini-scale preparation
template DNA from phagemids, phages, or plasmids suitable

Duine JA & Jongejan JA (1989) Quinoproteins, enzymes with
pyrroloquinoline quinone as cofactor. \textit{Annu Rev Biochem} 58:
403–426.

Elhai J & Wolk CP (1988) A versatile class of positive-selection
vectors based on the nonviability of palindrome-containing
plasmids that allows cloning into long polylinkers. \textit{Gene} 68:

Goldstein A (1995) Recent progress in understanding the
molecular genetics and biochemistry of calcium phosphate
solubilization by gram negative bacteria. \textit{Biol Agric Hortic} 12:
185–193.

\textit{Acinetobacter calcoaceticus} genes involved in biosynthesis of
the coenzyme pyrroloquinoline–quinone: nucleotide sequence
and expression in \textit{Escherichia coli} K-12. \textit{J Bacteriol} 171:
447–455.

Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, Kim
YH & Kim YC (2006) Multiple determinants influence root
colonization and induction of induced systemic resistance by

Hilda R & Reynaldo F (1999) Phosphate solubilizing bacteria and
their role in plant growth promotion. \textit{Biotech Adv} 17: 319–332.

Illmer P, Barbato A & Schinner F (1995) Solubilization of
hardly-soluble AIPO4 with P-solubilizing microorganisms.

antifungal agent produced by \textit{Pseudomonas} species in

Kim KY, Jordan D & Krishnan HB (1998) Expression of genes
from \textit{Rhahmella aquatilis} that are necessary for mineral
phosphate solubilization in \textit{Escherichia coli}. \textit{FEMS Microbiol

Kim KY, Hwangbo H, Kim YW, Kim HJ, Park KH, Kim YC &
Seoung KY (2002a) Organic acid production and phosphate
solubilization by \textit{Enterobacter intermedium} 60-2G. \textit{Korean

Kim YC, Kim CH, Kim KY & Cho BH (2002b) Induced systemic
resistance and plant growth promotion of a phosphate-
solubilizing bacterium \textit{Enterobacter intermedium} 60-2G.

Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS & Kim YC
(2003a) Cloning and expression of pyrroloquinoline quinone
(PQQ) genes from a phosphate-solubilizing bacterium

(2003b) 3-Methylhipropanoic acid produced by
\textit{Enterobacter intermedium} 60-2G inhibits fungal growth and

YC (2006) Expression of \textit{pqq} genes from \textit{Serratia marcescens}
\textit{W1} in \textit{Escherichia coli} inhibits the growth of phytopathogenic

Meulenberk JMJ, Sellink E, Riegen NH & Postma PW (1992)
Nucleotide sequence and structure of the \textit{Klebsiella pneumoniae}

Miller CD, Kim YC & Anderson AJ (1997) Cloning and
mutational analysis of the gene for the stationary-phase
inducible catalase (\textit{catC}) from \textit{Pseudomonas putida}. \textit{J Bacteriol}
179: 5241–5245.

Olive W & Kok JI (1979) Analysis of growth of \textit{Gluconobacter
oxydans} in glucose-containing medium. \textit{Arch Microbiol} 121:
283–290.

Analysis Part 2, Chemical and Microbial Properties} (Page AL,
Miller RH & Keeney DR, eds) pp. 403–430. American Society
of Agronomy, Madison, WI.

Sambrook J, Frithsch EF & Maniatis T (1989) \textit{Molecular Cloning:

Proteome analysis of \textit{Paenibacillus polymyxa} E681 affected by

Van Schie BJ, De Mooy OH, Linton JD, Van Dijken JP & Kuenen
JG (1987) PQQ-dependent production of gluconic acid by
\textit{Acinetobacter}, \textit{Agrobacterium} and \textit{Rhizobium} species. \textit{J Gen
Microbiol} 133: 867–875.

Veltrop JS, Sellink E, Meulenberk JM, David S, Bulder I &
\textit{in vitro} and detection of an intermediate in the biosynthetic