Characterization of Products from the Reactions of N-Acetyldopamine Quinone with N-Acetylhistidine

Rongda Xu,* Xin Huang,* Thomas D. Morgan,† Om Prakash,‡ Karl J. Kramer,†‡¹ and M. Dale Hawley*

Departments of *Chemistry and †Biochemistry, Kansas State University, Manhattan, Kansas 66506; and ‡U.S. Grain Marketing Research Laboratory, Agricultural Research Service, United States Department of Agriculture,* Manhattan, Kansas 66502

Received December 18, 1995, and in revised form February 12, 1996

When insects harden or sclerotize their exoskeletons, quinones of N-acetylated catecholamines such as N-acetyldopamine (NADA) undergo nucleophilic addition reactions with amino acids such as histidine in cuticular proteins. To determine the products that might form when this type of reaction occurs during cuticle sclerotization, the reactions between electrochemically prepared NADA quinone and N-acetylhistidine (NACH), a protein model nucleophile, have been investigated at pH 7. Two major products, 6-[N-(N-acetylhistidyl)l]-N-acetyldopamine and 2-[N-(N-acetylhistidyl)]-N-acetyldopamine, were purified by semipreparative reversed-phase liquid chromatography and identified by mass spectrometry and nuclear magnetic resonance spectroscopy. The relative molar ratio of the C(6) mono-addition adduct to the C(2) mono-addition adduct is 87:13. UV/vis spectroscopic analysis shows that both products have an absorption maximum at 284 nm. Cyclic voltammetry shows that these adducts are oxidized less readily than NADA.

Key Words: quinone; catecholamine; cuticle; histidine; protein; sclerotization; adduct; oxidation; addition.

N-Acylcatecholamines are important catecholamine metabolites used by insects to sclerotize or harden their exoskeletons. N-Acetyldopamine (NADA) and N-β-alanyldopamine are oxidized to quinones that undergo nucleophilic addition by amino acid side chains in cuticular proteins (1–3). Covalent bonds that are formed between the aromatic ring of NADA and cuticular protein amino acids, such as histidine and lysine, have been detected in insect cuticle using solid-state double cross polarization 13C and 15N NMR (4). Cross-links between the β-carbon (C7) in the side chain of dopamine derivatives and histidine residues have been found in cuticle by rotational echo double resonance NMR (5). Catecholamine-containing proteins have been isolated from insect cuticle undergoing sclerotization (6). Cuticle-catalyzed coupling between NADA and N-acetylhistidine (NACH) has been studied in vitro, and both β- and ring C6-addition adducts have been detected (2).

The goal of this study was to determine the initial steps of the oxidation reaction pathway of NADA when a nucleophile is present in excess. To mimic the cuticle-catalyzed reactions, we investigated a model system for cuticle sclerotization in which electrochemically prepared NADA quinone was reacted with a typical protein nucleophile, NACH. Reactions were studied using reversed-phase liquid chromatography (LC), cyclic voltammetry (CV), and UV/vis spectroscopy. The two major products, 6-[N-(N-acetylhistidyl)]-N-acetyldopamine and 2-[N-(N-acetylhistidyl)]-N-acetyldopamine, were characterized by fast atom bombardment mass spectroscopy (FAB-MS), NMR spectroscopy, CV, and UV/vis spectroscopy.
MATERIALS AND METHODS

Chemicals. The following chemicals were obtained from commercial sources and used as received: NADA and NAcH (Sigma Chemical Co., St. Louis, MO); formic acid, ammonium formate, and disodium ethylenediaminetetraacetate (EDTA) (Fisher Scientific Co., Pitts- burg, PA); methanol (UV cutoff: 204 nm) (Baxter Healthcare Corpo- ration, Burdick & Jackson Division, Muskegon, MI); KCl (Mallinck- rodt Specialty Chemicals, Chesterfield, MO); and HCl (J. T. Baker Chemical Co., Phillipsburg, N.J.).

Small-scale electrochemical preparation of NADA quinone. Small- scale preparation of NADA quinone was performed by electrolysis of 0.5 ml NADA in 0.01 M HCl and 0.09 M KCl (pH 2.0). A custom-made coulometric microcell with a platinum gauze working electrode, a Ag/AgCl (saturated KCl) reference electrode and a platinum auxiliary elec- trode was used. The design of the cell and the electrolysis procedure have been described in a previous paper (7). The potential for coulomet- ric oxidation of NADA was controlled at 700 mV. Electrolyses for 2.5, 3.0, 3.5, and 4.0 min were sufficient for greater than 99% oxidation of 0.5, 1.0, 2.0, and 3.0 mm solutions of NADA, respectively. In order to perform the kinetic studies at pH 7.0, NADA quinone that is generated at pH 2.0 must be stable so that the kinetic reaction starts only at the time of mixing NADA quinone with nucleophile solution in the pH 7.0 buffer (see next section). This was demonstrated in a separate experi- ment, where it was observed that the decrease in absorbance at 396 nm, which is the absorption maximum of NADA quinone, was less than 0.75% over a 3 min period.

Analytical LC, UV/vis, and electrochemical studies of the reactions of NADA quinone with NAcH. To study compositions of a reaction mixture resulting from mixing NADA quinone and NAcH in a 1:100 molar ratio, 90 µl of 1 mM NADA quinone were mixed with 225 µl of 40 mM NAcH at pH 7.0. The pH of the mixture was 7.0. One hundred microliters of the resulting solution were analyzed by LC at 30°C. The LC system consisted of a Beckman (Berkeley, CA) model 332 gradient liquid chromatography system equipped with two model 110A pumps and a model 420 controller, a Hewlett-Packard (Palo Alto, CA) HP 8452A diode array spectrophotometer equipped with a 1-cm quartz cell (Pyrocell Manufacturing Co., Inc., Westwood, NJ), and a Bioanalytical Systems (West Lafayette, IN) LC-4B dual amperometric detector connected to a Hewlett-Packard HPLC ChemStation via a Hewlett-Packard 35900 multichannel interface. Separation was achieved on a Microsorb-MV C18 column (5 µm, 4.6 × 250 mm) (Rainin Instrument Co., Inc., Woburn, MA) with a binary mobile phase system in which solvents A and B were used. Solvent A was 150 mM formic acid, 30 mM ammonium formate, and 0.1 mM EDTA (pH 3.0), and solvent B was 50% methanol, 180 mM formic acid, 8 mM ammonium formate, and 0.1 mM EDTA (pH 3.0). The mobile phase gradient was 0–15 min, 80% solvent A and 20% solvent B, and 15–30 min, linear gradient from 20% solvent B to 80% solvent B; the flow rate was at 1 ml/min. UV/vis spectra of the LC effluent were recorded every 10 s for the duration of the experiment within the 220–550-nm wavelength range. Plots of absorbances at specific wavelengths, such as 280 nm, as a function of time are extracted from these spectral data to give desired chromatograms. The dual amperometric detector that was used for electrochemical detection of the LC effluent has a thin-layer electrochemical flow cell with two glassy carbon working electrodes, a Ag/AgCl (3 M KCl) reference electrode, and a stainless steel auxiliary electrode. The electrode potentials were 800 and –100 mV. The former potential is sufficient to oxidize NADA and the products formed from the reaction of NADA quinone and NAcH, whereas the latter potential is sufficient to re-duce NADA quinone and any adduct quinone. The two working elec- trodes were arranged in a parallel configuration so that both electro-
RESULTS

Studies of the Reactions of NADA Quinone with NAcH

Cyclic voltammetry. The electrochemical behavior of NADA in the presence of NAcH at pH 7.0 was studied using cyclic voltammetry. A voltammogram obtained at a scan rate of 50 mV/s is shown in Fig. 1. In the first cycle, the voltammogram of NADA consists of a single anodic peak at 0.18 V for the two-electron oxidation of NADA to NADA quinone and a corresponding cathodic peak at 0.12 V for the reduction of NADA quinone to starting material. In subsequent cycles, another redox couple appears at a potential that is 80 mV more positive than that for the NADA/NADA quinone couple. As the scan number increases or as the scan rate decreases, the magnitudes of the peaks for this new couple increase at the expense of the peaks for the NADA/NADA quinone couple. Since the new redox couple is not formed when NAcH is absent, these results indicate that NADA quinone undergoes a relatively slow chemical reaction with NAcH under these conditions to give one or more products that are oxidized at more positive potentials.

UV/vis spectroscopy. The kinetic behavior of NADA quinone in NAcH solutions was studied spectroscopically under pseudo first-order conditions, i.e., the analytical concentration of NAcH was at least ten times greater than that of the quinone. The spectral changes that are associated with the reaction of 0.3 mM NADA quinone with 50 mM NAcH at pH 7.0 are shown in Fig. 2. The absorbance at the λ_{max} of the quinone, 396 nm, decreases with time, whereas absorbances at 242 and 284 nm increase, indicating that consumption of the quinone and formation of a new product(s) occur.

Rate constants for the reaction of NADA quinone with NAcH were estimated on basis of the rate of decrease in NADA quinone's absorbance at 396 nm. The dependence of the rate constant for the reaction of NADA quinone on quinone concentration was studied using solutions of 0.15, 0.3, 0.6, and 0.9 mM NADA quinone in 200 mM NAcH at pH 7.0. As expected for a pseudo-first-order reaction, the rate constant for the NADA quinone reaction is independent of quinone concentration (data not shown). The dependence of the reaction rate on NAcH was also studied using 0.3 mM NADA quinone with 20, 50, 100, and 200 mM NAcH. The results demonstrate that the pseudo-first-order rate constant exhibits a linear dependence on the concentration of NAcH (Fig. 3). For 0.3 mM NADA quinone
REACTIONS OF DOPAMINE QUINONE WITH N-ACETYLHISTIDINE

NMR and MS Analyses of the Reaction Products

The purified reaction products NAcH-NADA-I and NAcH-NADA-II were characterized by FAB-MS. Both products have MH⁺ at m/z = 391 (spectra not shown). These results indicate that each of the products is a mono-addition adduct of NAcH with NADA quinone (theoretical m/z = 391).

The structure of the NAcH-NADA-I adduct was elucidated by 1D-1H and 13C NMR experiments, and 2D-13C-1H HMQC and 1H-1H TOCSY NMR experiments (Fig. 5). The chemical shift assignments are summarized in Table I. The 1H resonance signal at 8.80 ppm is assigned to H2* according to a NAcH spectrum previously reported in the literature (13). The doublet at 8.30 ppm is assigned to NH8* that is next to a CH and resonates at a lower field than aromatic protons. The broad peak at 7.85 ppm is assigned to NH9 that resonates at a lower field than any of the aromatic protons. NH8* at 8.30 ppm shows cross peaks at 3.35 and 3.15 ppm, respectively, in the 1H-1H TOCSY spectrum, which indicates that one of the C(6*) protons, H6*a, resonates at 3.35 ppm, and the other, H6*b, gives rise to the resonance at 3.15 ppm. The 13C-1H HMQC spectrum also confirms that the resonance of C6* (26 ppm) with NAcH. Mobile phase: 0–15 min, 20% B; 15–30 min, linear gradient from 20 to 80% B. Flow rate, 1 ml/min.

in 100 mM NAcH solution, values of 1.8 × 10⁻³ s⁻¹ and 1.8 × 10⁻² M⁻¹s⁻¹ were calculated for the pseudo-first-order and second-order rate constants, respectively. The positive intercept is due to inherent slow reactions of NADA quinone with unidentified components of the solvent electrolyte buffer system.

Analytical LC. A 100-μl aliquot of the solution obtained from mixing 90 μl of 1 mM NADA quinone with 225 μl of 40 mM NAcH at pH 7.0 was analyzed by LC. There were no discernible peaks in the LC-EC (reduction) chromatogram, which indicates that the quinone had been consumed quantitatively. The LC-EC (oxidation) chromatogram is shown in Fig. 4. The principal product, NAcH-NADA-I, eluted at 7.8 min, while the second most prominent product, NAcH-NADA-II, eluted at 4.8 min. A minor unidentified product eluted at 6.2 min. The peak at 17.4 min is due to NADA.

Another chromatogram displaying absorbance at 280 nm as a function of elution time was extracted from UV/vis spectra of the LC effluent of the reaction mixture at pH 7.0 (data not shown). The relative yields of the two major products were estimated on the basis of their 280-nm chromatographic peak areas, assuming equal molar absorption coefficients for the two products (vide infra). The relative molar ratio of NAcH-NADA-I to NAcH-NADA-II is approximately 87:13. Semi-preparative LC was performed to purify the two major products, which were white powders after lyophilization.
FIG. 5. 2D NMR spectra of NACh-NADA-I obtained from the reaction of NADA quinone with NACh. (A) 13C-1H HMQC NMR spectrum (D$_{2}$O); (B) 1H-1H TOCSY NMR spectrum [H$_{2}$O:D$_{2}$O (85:15)]. The strong peaks near 5 ppm are due to HOD.

elucidated by 1D-1H, 13C, DEPT NMR experiments, and 2D 13C-1H HMOC, HMBC NMR experiments (Fig. 6). These results are summarized in Table II. Several proton resonance peaks in the 1H and 13C-1H HMOC spectra of this adduct are present in pairs, which may be due to a slow conformational change in the structure over the NMR time scale. Since the 1H spectrum is quite complex, HMOC and HMBC spectra were used to assign the structure (Figs. 6A and 6B). Three C-H connectivities are present in the aromatic region of the HMOC spectrum, one of which must be due to C-H at the 5' position of the imidazole ring and two of which must be due to two of the C-H's at the 2, 5, and 6 positions of the benzene ring. Since the resonance signals do not overlap in this region, the NACh group must be attached to the aromatic ring.

13C and DEPT experiments were conducted to confirm that the N-acetylhistidyl moiety is not attached to the NADA side chain aliphatic carbons. The DEPT spectrum exhibits three 180° out-of-phased signals, demonstrating that three -CH$_{2}$- groups are present in the molecule, one of which is in the N-acetylhistidyl moiety and two in the NADA side chain (data not shown). These results confirm that the NACh moiety is bound to the NADA aromatic ring.

The position of the NADA ring to which the N-acetylhistidyl moiety is attached in NACh-NADA-II was assigned as follows. In the HMBC spectrum, H$_{8}$ at 3.15 and 3.38 ppm exhibits connectivity with the

TABLE I	Chemical Shift Assignments and Connectivities Provided by the 2D NMR Experiments for NACh-NADA-I				
Proton NMR	1H assignment	HMOC connectivity	TOCSY connectivity		
δ, ppm	Peak typesa	HMOC connectivity	δ, ppm	proton	
8.80	s	H$_{2}$'	135	7.40	H$_{5}$'
8.30	d	NH$_{8}$'	—	3.35, 3.15	H$_{6}$'a, H$_{6}$'b
7.85	m	NH$_{9}$	—	3.15', 2.50	H$_{8}$, H$_{7}$
7.40	s	H$_{5}$'	122	8.80	H$_{2}$'
6.90	s	H$_{2}$, H$_{5}$	117/114	—	—
3.35	dd	H$_{6}$'a	26	8.30, 3.15	NH$_{8}$', H$_{6}$'b
3.15	m	H$_{6}$'b	26	8.30, 3.35	NH$_{8}$', H$_{6}$'a
3.15'	m	H$_{8}$	39	7.85, 2.50	NH$_{9}$, H$_{7}$
2.50	m	H$_{7}$	29	7.85, 3.15	NH$_{9}$, H$_{8}$
2.00	s	H$_{11}$	22	—	—
1.85	s	H$_{10}$'	22	—	—

as, singlet; d, doublet; m, multiplet; dd, doublet of doublet.
REACTIONS OF DOPAMINE QUINONE WITH N-ACETYLHISTIDINE

SCHEME I

The H7 proton at 2.35 and 2.56 ppm exhibits three connectivities with aromatic carbon signals at 129, 124, and 115 ppm. Therefore, resonances at 124 and 115 ppm are due to C2 and C6, respectively. Moreover, C7 at 29 ppm exhibits connectivity with one rather than two aromatic protons. Since NAcH-NADA-I has already been identified as the C6 addition adduct, the proton at 7.02–7.04 ppm must be due to H6 and the N-acetylhistidyl moiety must be attached to C2. This conclusion is corroborated by the fact that H6 shows connectivity with C2 at 124 ppm in the HMBC spectrum, whereas C2 exhibits no connectivity with any proton in the HMQC spectrum. The COSY-LR spectrum is consistent with this assignment (data not shown). Therefore, NAcH-NADA-II is identified as the 2-addition adduct, 2-[N-(N-acetylhistidyl)]-N-acetyldopamine (Scheme I).

UV/vis and Electrochemical Characterization of the Reaction Products

The two principal reaction products were also characterized using UV/vis spectroscopy and cyclic voltammetry (data not shown). The UV/vis spectra show that both adducts have the same λ_{max} value at 284 nm, whereas CV data demonstrate that both adducts are more difficult to oxidize than NADA. The data from the characterization of these adducts are summarized in Table III.

DISCUSSION

Two major products were obtained from the reactions of NADA quinone with NAcH at pH 7.0 (Scheme I).
The most abundant product is 6-NAcH-NADA, which is the Michael 1,4-addition adduct of NADA quinone at C6 of the ring. The second major product is 2-NAcH-NADA, the Michael 1,6-addition adduct of NADA quinone at C2 of the ring. The detection of 6-NAcH-NADA is consistent with a previous study where NADA was mixed with NAcH in the presence of insect cuticle dissected from late fifth instar larvae of H. cecropia. In that study, the 2-NAcH-NADA adduct was not detected in the cuticle-catalyzed coupling study. However, because C2 is more sterically hindered, which is consistent with its NMR peak splitting, the 2-adduct might not be produced to a significant extent under the conditions used. In the NADA-NAcH-cuticle system, a β-side chain adduct was detected, which the authors suggested arose from the p-quinone methide intermediate. However, no side-chain addition adduct was detected in our system. The results indicated that (1) spontaneous tautomerization of o-quinone to p-quinone methide does not occur under our conditions and (2) an enzyme, quinone-quinone methide isomerase, would be needed to convert the quinone to its quinone methide isomer for β-carbon addition if it were to occur.

It is worthwhile to compare this system with a previously investigated system in which reactions of dopamine (DA) quinone with another protein model nucleophile, N-acetylcysteine (NACySH), yielded C2 and C5 mono-addition adducts as well as a C2, C5 di-addition adduct (14). First, no di-addition adducts were identified in the current system. This result is consistent with the observation that the mono-addition N-acetylhistidyl adducts are oxidized at 80 to 100 mV more positive potentials than NADA, which means that formation of a di-NACyS-DA adduct is not favored under our reaction conditions. Presumably, if electrolysis were performed continuously, or if oxidation were carried out either enzymatically or with an excess of chemical oxidant, then the mono-NAcH-NADA adducts would be oxidized and a di-addition adduct subsequently would be produced. In contrast, mono-addition N-acetylcysteinyl adducts of DA quinone are oxidized more readily than DA (14). This results in oxidation of the mono-addition adduct by unreacted DA quinone, which causes the mono-addition adduct quinone and DA to be formed. This mono-addition adduct quinone then reacts with the NACySH nucleophile that is present in large excess to form the di-adduct, 2,5-di-NACyS-DA. Second, the principal nucleophilic attacks occur at dif-

![FIG. 6. 2D NMR spectra (D_2O) of NAcH-NADA-II obtained from the reaction of NADA quinone with NAcH. (A) 13C-1H HMQC NMR spectrum; (B) 13C-1H HMBC NMR spectrum.](image-url)
TABLE III

Characteristic Data of NADA and Its NAcH Adducts

<table>
<thead>
<tr>
<th>Compound</th>
<th>MW</th>
<th>R.T. (min)</th>
<th>Rel. yield</th>
<th>UV: (\lambda_{max}) (logε)</th>
<th>CV: (E_{pa}, E_{pc}) (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADA</td>
<td>195</td>
<td>17.4</td>
<td>na</td>
<td>280 (3.38)</td>
<td>220, 95</td>
</tr>
<tr>
<td>6-NAcH-NADA</td>
<td>390</td>
<td>7.8</td>
<td>67%</td>
<td>284</td>
<td>300, 170</td>
</tr>
<tr>
<td>2-NAcH-NADA</td>
<td>390</td>
<td>4.8</td>
<td>13%</td>
<td>284 (3.46)</td>
<td>340, 170</td>
</tr>
</tbody>
</table>

See Scheme I for structures of the adducts.

The molecular weights were determined using FAB-MS.

Retention times were obtained from the LC-EC chromatogram of the reaction mixture at pH 7.0 (Fig. 4).

The relative yields of the two major products were estimated based on their peak areas in the LC-UV/vis chromatogram (not shown) of the reaction mixture at pH 7.0 (assuming comparable molar absorption coefficients).

UV/vis spectra of products were obtained during LC analysis. Molar absorption coefficients were obtained in 0.01 M HCl. The molar absorption coefficient of 6-NAcH-NADA was not measured.

Cyclic voltammetric data were obtained on a 7.1-mm² glassy carbon electrode at a scan rate 200 mV/s in 0.1 M phosphate buffer at pH 7.0.

ACKNOWLEDGMENTS

The authors thank Dr. B. Plashko for performing FAB-MS experiments and Dr. M. Collinson for providing the BAS-100W electrochemical system. We are grateful to Dr. T. L. Hopkins for assistance with this study and for reviewing the manuscript. We also thank Dr. G. Dryhurst (University of Oklahoma) and Dr. D. Hua (Kansas State University) for reviewing an earlier draft of the manuscript. This research was supported in part by National Science Foundation Grants DCB-9019400, MCB-9418129, and CHE-9216101 and was a cooperative investigation between the Agricultural Research Service and the Kansas Agricultural Experimental Station (Contribution No. 96-154-J).

REFERENCES