Beetling around the genome

SUSAN J. BROWN1*, ROBIN E. DENELL1 AND RICHARD W. BEEMAN2

1 Division of Biology, Ackert Hall, Kansas State University, Manhattan, KS 66505, USA
2 USDA-ARS-GMPRC, 1515 College Ave, Manhattan, KS 66506, USA

Summary

The red flour beetle, Tribolium castaneum, has been selected for whole genome shotgun sequencing in the next year. In this minireview, we discuss some of the genetic and genomic tools and biological properties of Tribolium that have established its importance as an organism for agricultural and biomedical research as well as for studies of development and evolution. A Tribolium genomic database, Beetlebase, is being constructed to integrate genetic, genomic and biological data as it becomes available.

1. Studies in Tribolium will contribute to many areas of biological research

Beetles (the Coleoptera) comprise the largest and most diverse of all eukaryotic orders. They include many beneficial and deleterious species, the latter associated with billions of dollars’ worth of agricultural losses annually. There are several compelling reasons to study the red flour beetle, Tribolium castaneum. First and foremost, Tribolium is one of the most sophisticated genetic model organisms among all higher eukaryotes. Among arthropods, only Drosophila offers greater power and flexibility of genetic manipulation. Second, Tribolium might prove to be invaluable in linking genome sequence information from Drosophila, honeybee and Anopheles with vertebrate gene annotation. Third, as a member of the most primitive order of holometabolous insects, the Coleoptera, it is in a key phylogenetic position to inform us about the genetic innovations that accompanied the evolution of higher forms with more complex development. Fourth, Tribolium offers the only genetic model for the profusion of medically and agriculturally important coleopteran species. Finally, many genetic and genomic tools have been developed for Tribolium, and both forward and reverse genetic approaches are available to facilitate functional genetic analysis.

Tribolium species host a large variety of protozoan and bacterial parasites and/or symbionts that provide fertile material for the study of host–pathogen interactions. Like many arthropods, certain Tribolium species are infected with Wolbachia, a Rickettsia-like organism. Strains of some Tribolium species (e.g. Tribolium confusum) harbor Wolbachia as obligate intracellular symbionts or parasites, and show classic incompatibility syndromes when mated with Wolbachia-deficient strains (Wade & Stevens, 1985). Other species, such as Tribolium madens, are devoid of Wolbachia and develop lethal infections when artificially inoculated (Fialho & Stevens, 2000). Still others, including T. castaneum, appear to be refractory to Wolbachia, in that they are immune to infection and are host-incompetent. Wolbachia infection is being examined for potential use in reducing the population density of insect vectors of human disease, either directly or as a vehicle to drive vector incompetence or other favorable traits through populations (Brownstein et al., 2003; Dobson, 2003; Rascon et al., 2003). Similar approaches might be efficacious with respect to insect pests of agriculture.

As a major global pest of stored grain and cereal products, peanuts and many other dried and stored commodities for human consumption, Tribolium has a long history of exposure to pesticides. It has proved to be readily adaptable to all classes of insecticides and fumigants, having developed resistance via oxidative and hydrolytic metabolism, target insensitivity, and other mechanisms (Andreev et al., 1994; Beeman & Nanis, 1986; Beeman & Stuart, 1990). These features,
in combination with excellent genetic tractability, recommend *Tribolium* as an ideal subject for the identification of new pesticide targets through knowledge of resistance mechanisms (Andreev et al., 1994; Beeman et al., 1992b).

Bioactive agents with potential impact on human health and biology have long been sought in the plant and fungal biodiversity present in the tropical rain forests. Beetles, with their unparalleled species and habitat diversity, might be a major untapped source of antibiotics and biopharmaceuticals. In *Tribolium*, *p*-benzoquinones, aliphatic hydrocarbons and other potential repellents, irritants, toxicants and antifungal or antibacterial components are produced in large ‘stink’ glands (Blum, 1981). Naturally occurring polymorphism in antibiotic potency has been demonstrated in at least two *Tribolium* species (Prendeville & Stevens, 2002), and several mutations have been identified that affect the biosynthesis and secretion of stink gland components (Hoy & Sokoloff, 1965; Englert, 1966; Beeman et al., 1996). *T. castaneum* was the first animal species ever reported to produce prostaglandin synthetase inhibitors (Howard et al., 1986). Given the importance of anti-inflammatory drugs acting through the prostaglandin pathway, the detection of this class of inhibitory compounds in *Tribolium* demonstrates the potential for drug discovery via mining the *Tribolium* genome.

The first maternal effect selfish (*Medea*) genes were discovered in *Tribolium* (Beeman et al., 1992a), and similar mechanisms of maternal selection of selfish genes have subsequently been discovered in mammals (Hurst, 1993; Peters & Barker, 1993).

2. Studies in *Tribolium* contribute to our understanding of evolution and development

As a coleopteran, *Tribolium* is in a key phylogenetic position to inform us about the genetic innovations that accompanied the evolution of higher insects. Among winged insects, the relatively more primitive orders are placed in the hemimetabola. These insects do not develop morphologically distinct larval and adult forms but rather undergo a series of molts in which earlier stages (nymphs) resemble miniature adults. By contrast, higher insects, which undergo complete metamorphosis, comprise the holometabola. Larval forms are worm-like, then transform into pupae within which develop adult insects of much different appearance. Comparative genomics promises to improve our understanding of the evolutionary changes that accompanied the rise of the holometabola, as well as other morphological specializations. The Coleoptera occupy a basal position among the holometabola. In comparison, the Diptera (which include *Drosophila melanogaster*, the most highly characterized insect) is one of the most advanced orders. Beetles and flies diverged close to 300 million years ago (Kristensen, 1999). One of their more conspicuous differences is embryonic segmentation, which occurs simultaneously along the anterior–posterior axis in *Drosophila* (long-germ development) but sequentially from anterior to posterior in more primitive insects (and vertebrates) (Davis & Patel, 2002). Insect larvae typically have heads derived from several segments including gnathocephalic segments with appendages that function in feeding. During *Drosophila* embryogenesis, all of these segments move through the presumptive anterior opening of the digestive tract to occupy internal positions, where they elaborate evolutionarily novel structures. The resulting larva is essentially headless and also lacks the thoracic limbs characteristic of almost all insects. By contrast, related developmental events in *Tribolium* are much more generalized. Larvae have typical head and gnathocephalic segments, and bear thoracic limbs. Because head segments remain in a linear order, studies in *Tribolium* will contribute to a comprehensive understanding of head and, ultimately, brain development. *Tribolium* head development is probably very similar to that in hemimetabolous insects, including grasshoppers, in which brain development has been very carefully described (Watson & Schurmann, 2002), but in which functional approaches are limited compared with *Tribolium*.

Advances in cellular, developmental and neurobiology are predominantly gained by studies of model organisms amenable to a range of genetic and biochemical approaches. Many of the intricacies of embryonic patterning have been elucidated by genetic and molecular studies in *Drosophila* (for review see Driever, 1993; Martínez Arias, 1993; Pankratz & Jäckle, 1993; Sprenger & Nüsslein-Volhard, 1993). However, many aspects of *Drosophila* development are highly derived, and evidence suggests that the underlying genetic regulation is equally derived. Comparative studies in several insects have provided insight into many developmental processes. *Tribolium* has figured prominently in these contributions, as highlighted below.

The establishment of anterior–posterior and dorsal–ventral coordinates in early embryos is one area in which *Drosophila* has been shown to display highly specialized regulatory mechanisms. Rapid (24 h) embryonic development in *Drosophila* is facilitated by the maternal contribution of factors that define the egg coordinates. However, there is mounting evidence that the gene encoding the anterior morphogen Bicoid evolved within the dipteran lineage by gene duplication and divergence (Brown et al., 2001; Stauber et al., 2002). In fact, recent analysis indicates that hunchback and orthodenticle pattern the anterior region of the *Tribolium* embryo and might be part of an ancestral patterning system (Schroder, 2003). The dorsal–ventral axis in *Tribolium* appears to be
patterned by gradients of Toll receptor and Dorsal protein centered on the ventral midline (Maxton-Kuchenmeister et al., 1999; Chen et al., 2000), which regulate twist (Somm er & Tautz, 1994) and decapentaplegic (dpp) (Sanchez-Salazar et al., 1996) expression, as in Drosophila. However, these gradients are formed by zygotic regulation of transcription in Tribolium, implying that the local activation of maternally supplied Toll receptor and ventrally limited nuclear localization of Dorsal are derived features of dorsal–ventral patterning in Drosophila. Expression of caudal, tailless and forkhead homologs in Tribolium suggest that posterior, but not anterior, aspects of the terminal patterning system are conserved (Schulz et al., 1998; Schroder et al., 2000).

Comparative analysis of segmentation in Tribolium has shown that gap and pair-rule genes are expressed in conserved patterns (Somm er & Tautz, 1993; Wolff et al., 1995; Brown & Denell, 1996) but forward and reverse genetic approaches suggest that conserved expression patterns do not always indicate conserved function. For example, a deletion that removes the pair-rule gene fushi tarazu does not result in a pair-rule phenotype in Tribolium (Brown et al., 1994a). These results emphasize the importance of comparative studies using genetically tractable insects such as Tribolium. However, it is likely that segment boundaries are formed by an ancient mechanism, as evidenced by the highly conserved expression patterns of the segment polarity genes wingless and engrailed (Nagy & Carroll, 1994; Brown et al., 1994b) as well as functional studies (Oppenheimer et al., 1999). Genetic analysis of homeotic mutants in Tribolium provided the first evidence for a contiguous cluster of Hox genes (Beeman, 1987), as later observed in vertebrates. Genetic and molecular analysis of Tribolium homeotic genes and mutants continues to correlate changes in regulatory gene interactions and morphological evolution, and shows that some Hox gene functions in Drosophila are highly specialized for dipteran-specific adaptation and are not representative of most taxa (Brown et al., 2000, 2002b; Lewis et al., 2000; DeCamillis et al., 2001).

Formation of limb fields requires expression of dpp in Drosophila but not in Tribolium (Jockusch et al., 2000). Although several genes required for imaginal leg development in Drosophila are also expressed in developing embryonic legs in Tribolium, their relative expression patterns indicate that there are significant differences in the genetic regulation of leg development (Beermann et al., 2001; Prpic et al., 2001). The expression patterns observed in Tribolium are similar to other insects, whereas those in Drosophila are specialized, perhaps reflecting development from imaginal discs.

The organization of the central nervous system (CNS) is highly conserved in arthropods. In Drosophila, the segmentation and homeotic genes are expressed in the developing CNS and are required for proper neuronal differentiation. In Tribolium, segmentation and homeotic genes are also expressed in the developing CNS in segmentally reiterated patterns that closely resemble those of their Drosophila counterparts. Recently, sequence analysis of bacterial artificial chromosome (BAC) clones containing proneural genes in Tribolium has provided insight into the evolution of the achaete/scute complex (Wheeler et al., 2003). Comparison of the function of the single Tribolium achaete/scute homolog with that of the Drosophila proneural ac/sc genes suggests that the Drosophila ac/sc genes acquired new developmental roles in specifying the fate of neural precursors while maintaining an ancestral function in their formation. Further analysis indicates that ventral neurons defective (vnd), intermediate neurons defective (ind) and muscle segment homeobox (msh) are expressed in Tribolium in patterns largely similar to those of their Drosophila homologs. However, gaps in the expression of vnd indicate that some neurons in the Tribolium CNS must be patterned by different genes (Wheeler et al., 2003).

3. Many genetic and genomic tools enhance Tribolium research

Tribolium has been raised for more than four decades in the laboratory and thrives on a simple diet of wheat flour supplemented with 5% yeast. It is easily manipulated, and tolerates crowding and inbreeding. The generation time is flexible (3–8 weeks, depending on the rearing temperature), and adults have long reproductive lives. Tribolium eggs are approximately twice the size of Drosophila eggs, and most protocols developed for experimental manipulation in Drosophila, including in situ hybridization and immunohistochemistry, work well in Tribolium. Tribolium lacks polytene chromosomes but mitotic and meiotic spreads are easily obtained (Stuart & Mocelin, 1995). Nine autosomes and X/Y sex chromosomes compose the chromosomal complement in Tribolium castaneum, and recombination occurs in both sexes.

Among beetles, sophisticated genetic manipulations are possible only in Tribolium. Genetic screens in Tribolium have produced a wealth of morphological, physiological and developmental mutants. At the genetic stock center in Manhattan, Kansas, there are over 300 mutant strains that are easily maintained at room temperature by subculturing every 3–4 months. Gain-of-function mutations have been reverted by mutagenesis to reveal null phenotypes (Stuart et al., 1993; Brown et al., 2000; Shippy et al., 2000). Mutant alleles of homeotic genes not previously identified by mutation were identified in screens designed to saturate the region of the HOMC uncovered by deficiencies (Brown
Tribolium is likely to be an important resource for genome annotation. Analysis of the recently published Anopheles genome sequence indicates that mosquito and fly genes are markedly less similar than expected for two taxa separated for about 200 million to 250 million years (De Gregorio & Lemaître, 2002). Furthermore, when Tribolium, Drosophila and human sequences are compared, the Tribolium sequences are often more similar to their human counterparts than are their Drosophila homologs (D. Tautz, personal communication; R. Beeman, unpublished). In fact, some Drosophila gene sequences have diverged to the point that BLAST analysis of certain honeybee expressed sequence tags (ESTs) found better matches among chordates than in Drosophila (Whitfield et al., 2002). For most of these, Drosophila homologs could be identified but, in some cases, the Apis coding sequences have no match in the Drosophila genome, indicating that these genes were lost in the Drosophila lineage. These results indicate that data from other insect orders will be required to link human genes to their Drosophila homologs. In fact, the relationship between the Drosophila zen and human HOX3 genes was elucidated by comparisons including data from Schistocerca and Tribolium (Falciani et al., 1996).

More recently, in a chromosomal walk to clone several Tribolium genes positionally, we identified the insect ortholog of a human muscular dystrophy gene that was not identified by direct comparison with Drosophila sequence (R. Beeman, unpublished). Thus, analysis of the Tribolium genome will provide informative comparisons for the identification of insect homologs of human genes. Moreover, Tribolium is the most efficient system in which to perform functional analysis of those genes lost in the Drosophila lineage but conserved in other insects.

We have developed several genetic tools that will allow the new sequence information to be used effectively. Tools for reverse genetic analysis in Tribolium include RNA interference and transformation. Maternal and/or zygotic mRNAs can be depleted in Tribolium by injecting double-stranded RNA into the abdomen of female pupae (Bucher et al., 2002) or freshly laid eggs (0–2 h old) (Brown et al., 1999). Thus, Tribolium is well suited to high-throughput genome-wide RNA interference screens, as in Caenorhabditis elegans (Maeda et al., 2001; Kamath et al., 2003). Such screens will identify embryonic and maternal genes, as well as genes with functions relevant to basic cell biology that produce phenotypes affecting oogenesis.

Using the piggyBac vector and eye-specific transformation markers, it is now possible to introduce DNA into the Tribolium genome (Berghammer et al., 1999; Lorenzen et al., 2002, 2003). Several researchers are designing vector constructs to induce tissue- and stage-specific expression of introduced genes and double-stranded RNA constructs. In addition, several labs are preparing to perform genome-wide screens using transposon-mediated mutagenesis.

The Tribolium genome is approximately 0.2 pg or 200 Mb, based on hybridization kinetics (Cot analysis) (Brown et al., 1990) and microdensitometric quantitation of Feulgen-stained spermatids (Alvarez-Fuester et al., 1991). Unique sequences compose more than 60% of the genome and repetitive DNA displays a long-period interspersion pattern. Several satellite DNA sequences have been identified that are conserved between Tribolium species (Juan et al., 1993) and are clustered in putative centromeric regions (Plohl et al., 1993). A strain of T. castaneum that had been inbred by single-pair matings of full siblings for 20 consecutive generations (S. Thomson, University of Wisconsin, Parkside, unpublished) was the source of DNA for construction of BAC libraries, as well as molecular and physical maps. This strain is currently maintained in several laboratories in the USA and will be used as the source of DNA for whole genome shotgun sequencing.

The linkage groups of the original recombination map were identified by morphological mutations, whereas physiological and biochemical markers have since been added. A higher resolution recombination map based on molecular markers is under construction. This map contains over 400 markers from BAC end sequences, ESTs and developmentally important genes identified by individual researchers. In addition, we are constructing a physical map based on HindIII digests of the more than 27,000 clones in a BAC library (Exelixis Pharmaceutical, South San Francisco). The molecular and physical maps will be integrated by including BAC end sequences in the molecular map. Together, these resources provide a high-resolution scaffold on which to assemble the genome sequence. Several BACs sequenced by shotgun methods were assembled with no difficulty (Brown et al., 2002a; Wheeler et al., 2003).

It will be a major undertaking to annotate the Tribolium genome sequence. There are several programs available to automate most of the process, and we have several sources of cDNA sequence data available to train a gene-finding model specifically for Tribolium. Researchers at Exelixis Pharmaceutical have sequenced more than 8800 ESTs derived from adult tissue and assembled them into more than 4600 contigs. More than 2000 additional ESTs from embryonic tissue have been sequenced and assembled into a minimum of 386 non-redundant clones (D. Tautz, personal communication). In addition, cDNAs from developmental studies by individual researchers are
also available for annotation purposes. It is likely that a significant amount of annotation will be facilitated by comparison with other insect genomes. In addition, the sequence of the Tribolium castaneum mitochondrial genome has recently been published (Friedrich & Muqim, 2003). Clearly, the rationale to sequence the Tribolium genome is strongly supported by the plethora of genomic resources already available to facilitate the assembly and analysis of the Tribolium genome sequence. To make this information available to the scientific research community, we are constructing a Tribolium genomic database, Beetlebase, that will integrate genetic, genomic and biological data as it becomes available.

We thank members of the Tribolium research community, including D. Tautz, M. Klingler, R. Schröder, S. Roth and E. Wimmer, for contributions to the original version of this review, which was submitted to the NHGRI to support sequencing the Tribolium genome. Work to develop Tribolium as a genetic model organism is supported by the National Institutes of Health, the National Science Foundation, the US Department of Agriculture and the Human Frontier Science Program. All programs and services of the US Department of Agriculture are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status or handicap.

References


