Search National Agricultural Library Digital Collections

NALDC Record Details:

A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat

Permanent URL:
Download [PDF File]
A dimeric PR-1-type pathogenesis-related protein (PR-1-5) recently identified in wheat was found to interact with Stagonospora nodorum ToxA in both yeast two-hybrid and co-immunoprecipitation assays. Site-specific mutational analyses revealed that the RGD motif of ToxA is not targeted by PR-1-5, while two surface-exposed asparagine residues are essential for the interaction: the N102 residue of the turning loop between ß2 and ß3 in ToxA and the N141 residue of the turning loop between ßC and ßD in PR-1-5. Recombinant PR-1-5 and ToxA mutant proteins carrying alanine substitutions at the interacting sites were expressed in Pichia pastoris along with the wild type proteins. Native PAGE analysis confirmed that the PR-1-5-N141A mutant retains the ability to form dimers. Plant assays indicated that the ToxA-N102A mutant fails to induce necrosis whereas the PR-1-5-N141A mutant is impaired in the "necrosis-promoting" activity shown by the wild type PR-1-5 when co-infiltrated with ToxA in sensitive wheat. Western blot analyses revealed that the native PR-1-5 protein accumulates in ToxA-treated sensitive wheat and is likely associated with membranes. These results suggest that the PR-1-5-ToxA interaction is potentially involved in ToxA internalization or activation of cell death pathway(s) governed by the cognate sensitivity gene in wheat.
Shunwen Lu , Justin D. Faris , Robert Sherwood , Timothy L. Friesen , Michael C. Edwards
USDA Scientist Submission
ARS USDA Submissions 2014 9 v.15 no.7
Blackwell Science
Journal Articles, USDA Authors, Peer-Reviewed
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.