Search National Agricultural Library Digital Collections

NALDC Record Details:

N-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-kB dependent mechanisms

Permanent URL:
Download [PDF File]
Excessive secretion of proinflammatory adipokines has been linked to metabolic disorders. We have previously documented anti-inflammatory effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) in adipose tissue; however, the mechanisms by which these fatty acids regulate adipokine secretion remain unclear. Here, we determined differential effects of eicosapentaenoic acid (EPA, n-3 PUFA) vs. arachidonic acid (AA, n-6 PUFA) on expression and secretion of angiotensinogen (Agt), interleukin 6 (IL-6) and monocyte chemotactic protein (MCP-1) in 3T3-L1 adipocytes. While both PUFAs increased intracellular Agt protein and mRNA expression, Agt secretion into culture media was increased only by AA treatment, which in turn was prevented by co-treatment with EPA. At various AA/EPA ratios, increasing AA concentrations significantly increased secretion of the above three adipokines, whereas increasing EPA dose-dependently, while lowering AA, decreased their secretion. Moreover, IL-6 and MCP-1 were more significantly reduced by EPA treatment compared to Agt (IL-6>MCP>Agt). Next, we tested whether nuclear factor-κB (NF-κB), a major proinflammatory transcription factor, was involved in regulation of these adipokines by PUFAs. EPA significantly inhibited NF-κB activation compared to control or AA treatments. Moreover, EPA attenuated tumor necrosis factor-α-induced MCP-1 and further reduced its secretion in the presence of an NF-κB inhibitor. Taken together, we reported here novel beneficial effects of EPA in adipocytes. We demonstrated direct anti-inflammatory effects of EPA, which are at least in part due to the inhibitory effects of this n-3 PUFA on the NF-κB pathway in adipocytes. In conclusion, these studies further support beneficial effects of n-3 PUFAs in adipocyte inflammation and metabolic disorders.
Nalin Siriwardhana , Nishan S. Kalupahana , Sarah Fletcher , Wenting Xin , Kate J. Claycombe , Annie Quignard-Boulange , Ling Zhao , Arnold M. Saxton , Naima Moustaid-Moussa
USDA Scientist Submission
Journal of Nutritional Biochemistry 2012 Dec. v.23 no.12
Elsevier Science
Journal Articles, USDA Authors, Peer-Reviewed
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.