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SimMPLE MODEL OF BORDER IRRIGATION
By D. B, Jaynes'

Apaynact:  This paper describes a numerical model for irrigation of sloping and
level borders. The model solves the differential form of the combined equations
for the conservation of mass and momentum with the acceleration terms re-
moved. A finite difference scheme is used with the depth gradient term ex-
pressed explicitly and averaged over the entire wetted border. The model is
stable and inexpensive to run. Model results compare well with measured ad-
vance and recession times. Predicted ponding depths during infillration and
total water infiltrated over the border also agree veell with observed behavior.
The model gives results equivalent to those of other existing zero-inertia and
fully dynamic models but is much simpler to program and requires less com-
puter code.

INTRODUCTION

One of the first priorities in agriculture today is the development of
irrigation designs that are more efficient in the use of both water and
energy resources for a variety of crops and farming practices. An integral
part of this research is the development of mathematical models for the
accurate description of the irrigation process. These models can be used
to develop and refine new irrigation technologies, rapidly and inexpen-
sively test new designs for a wide range of conditions, and prepare eco-
nomic assessments of different designs. However, to be useful, models
must accurately represent the interplay between soil hydraulic proper-
ties, irrigation system design, and surface water hydraulics.

‘Border irrigation systems, including level basins, represent an impor-
tant class of irrigation systems widely used in agriculture today. These
systems are flexible and their simulation has been the objective of an
extensive modeling effort in recent years. Border irrigation can be con-
sidered a problem of non-steady water flow in one dimension. Treating
the border as a wide channel, we can accurately describe the flow with
the Saint-Venant equations {(4). These equations consist of an equation
describing the conservation of mass
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and a second equation describing the conservation of momentum
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In these equations i = the water depth (L); { = Hme (T); g = the flux
per unit width (L’T™"); x = distance down the reach (L); w = the infil-
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tration rate (LT™'); g = the acceleration of gravity (LT™*); v = the velocity
{LT™Y) where g = vit; § = the slope of the border (LL™!); and 5 = the
friction slope (LL™"). Current models for border irrigation can be grouped
into four classes: volume balance, full dynamic, kinematic, and zero-
inertia. Details of these approaches can be found in a review by Bassett
et al. (2), as well as in other places and will not be reviewed in detail
here. Briefly, volume balance approaches solve Eq. 1 by assuming pre-
determined shape factors for the surface and infiltration profiles (9). These
methods give satisfactory results for many problems but can be applied
to only a narrow range of conditions (16). Full dynamic models (3,10)
solve the complete Saint-Venant equations. These models are accurate
over a wide range of conditions but require censiderable computation
time (16}. Both kinematic and zero-inertia methods simplify the mo-
mentum equation by assuming that the acceleration (inertial) terms are
negligible and therefore can be ignored. For most border systems, where
Fraude values are below (.3 (5), this is a reasonable assumption (11).
Kinematic solutions (13,14,18) further simplify the equations by assum-
ing that the water depth gradient, #h/dx, is also negligible in Eq. 2 and
thus set the bottom slope equal to the friction slope. Although both pro-
cedures give acceptable results for a wide range of conditions, kinematic
solutions are not applicable to level or blocked borders and may not be
adequate during the initial stages of recession because of the steep depth
gradients developed then. Zero-inertia methods (16} therefore seem to
be the best approach for modeling border irrigation over a wide range
of conditions.

In this paper a method for solving the conservation of mass equation
and the zero-inertia form of the momentum equation is described. The
model (designated Z.1.D.) solves the differential form of the combined
Egs. 1 and 2. Results of the model are compared to earlier models and
to field data for typical border irrigation conditions.

MopeL Descripmion

In the zero-inerta form of the momentum equation, we assume that
the acceleration terms and the term representing the dynamic effects of
infiltration are negligibly small and can be set equal to zero. Eq. 2 then
becomes

where the depth, A, depends on iime as wel as distance. The friction
slope, 5;, is defined by (4)
2 2.2
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where C = the Chezy C (L'*T™'); C, = a units conversion factor
(L'T7Y; and n = the dimensionless Manning roughness factor. Substi-
tuting Eq. 4 into Eq.’ 3 and solving for g gives:
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which is in the form of the Manning equation with the depth gradient
retained in the Manning coefficient, C, (L*°T7"). Substituting Eq. 5 into
Eq. 1 gives a single, nonlinear, partial differential equation for border
irrigation with C, spatially dependent as defined in Eq. 5
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In this model we solve Eq. 6 by dividing the border into r reaches of
arbitrary length [Fig. 1{(a)]. By letting the water depth for each reach
equal the average of the depths at the ends of each reach and by taking
the backward derivative of both the time and space derivatives, we can
write Eg. 6 in a finite difference form for reach {
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where the flux into (g%,) and out of (¢7) reach i is represented b
Gy, h3? and C 7 respectively, Ax; is the length of the reach, and f‘:
and h;, are the depths of water at the outlet and inlet ends of the reach,
respectively. The starred depth terms are for the end of the time step
At and the unstarred terms are for the beginning of the time step. If we
use an explicit form for C, and solve for each reach successively, starting
at the border inlet and progressing down the flow path, the only un-
knpwn in Eq. 7 is i which is solved for iteratively:
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where V; = the volume infiltrated per unit width during &t which equals
Athxaw; and is described later.

The solution scheme represented by Eq. 8 is possible because we as-
sume the water moves across the border in only one direction, away
from the inlet. Thus, the flow is not affected by downstream conditions
except through the C, term. Therefore, reversals in the direction of flow
cannot be handled by the model described here, and conditions where
this may occur such as the arrival of the advancing stream to the end
of a blocked border must be handled in a different manner described
below,

li

Manming COEFFRICIENT

From Eq: 3, the Manning coefficient, (;, depends on the bottom slope,
Manning roughness coefficient, and depth gradient. Assuming that only
the depth gradient is a function of time, we can calculate the time de-
pendent Manning coefficient, C,, by using an explicit form of Eq. 5

C, By — hg e
Cgi = '-' Sg s (9)
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where hy and h,, are two known depths at the beginning of the time step
separated by distance . In this model hy = the depth of water at the
inlet end of the first water covered reach and h,, = the water depth at
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the advancing front or at the end of the border once the advance phase
is completed. This averaging of the depth gradient is used to avoid sta-
bility problems caused by using explicit values of the gradien! found
from local differences in the water depth (14). If the Manning roughness
coefficient, n;, does not vary over the border, Eq. 9 gives the same Man-
ning coefficient for each reach. In effect, we are replacing the Manning
coetficient which we would expect to vary over the border, increasing
near the wetting front, with an average value for all reaches. Eq. 9 shows
that the depth gradient term will make a dominant contribution to €, at
the start of irrigation but will become less important as the wetting front
advances {f increases).

INFILTRATION

The infiltration term for each reach, V,, represents a vaiue averaged
over both the reach distance, Ax, and the time increment, Af, since the
reach is not wetted uniformly but from the inlet end first. In this model,
a derivation for V similar to the scheme described by Clemmens (7} and
Stretkoff (15) is followed. For the initial wetting of the first reach, the
infiltrated volume per unit width, V,, is found from

V; = J’ li{T)dx = f Ig(’i’)dx ................................... (10)
[ B

where [, = the depth infiltrated (L),

Here we will assume that [; can be represented by the modified Kos-
tiakov equation (8)
L= S o A (11)

where v represents infiltration opportunity time. We will also assume
that the wetting front moves across the reach at a uniform linear rate
expressed by

dx

dr

Ax,

Substituting Eqs. 11 and 12 into Eq. 10 gives

|
V= f edSaT A+ AT {13)
]

where f, = the time for the advancing front to reach x, . Integrating and
factoring out x; = Ax; = ¢, gives for the infiltration volume in reach 1

S1 3 Atl‘ g

Vi = Ax, B (14)
by +1 2

In general, the infiltration volume per unit width can be found for any

time increment and reach. The wetting front first arrives at reach i at #,_,

and travels Ax; in At, where ¢ = tip + Aty For any time increment, Ay

= t; — k., after ., the volume of water that infiltrates reach | during

i !
this time can be found from : :
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which can be written as
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Integrating Eq. 16, substituting Ax; for oAt and recognizing that the
second term on the right-hand side of Eq. 16 is equal to the total volume
of water infiltrated into the reach from the start of irrigation to f_, and
is known from the previous time steps, we thus have
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which is used to calculate the value of V, in Eq. B.

BounpaRY CONDITIONS

The solution of Eq. 8 depends on the irrigation phase. During advance
the inlet or upper boundary condition is {from Eq. 5):

Go ™ Gl (18)
375
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where g, = the water application rate per unit width of border (L*T ).
Each successive water depth can then be found from Eq. 8. The lower
boundary condition during advance is k), = 0.0; however, the length of
the end reach is unknown. The length is found by rearranging Eq. 7 to
solve for Ax,. Since if = b, = h,_; = 0.0 for this reach we have

A 208C, RS
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A slight modification on this scheme is used for calculating the initial
advance across the first reach. For this case, Eqgs. 19 and 9 are solved
iteratively for hf with h,, = 0 and Iy = K, in effect using an implicit
representation for C,, at this time step. This method affords greater sta-
bility in the solution when the boundary condition undergoes a rapid
change due to the start of water application,

During the storage and recession phases, the lower boundary condi-
tion is no longer zero water depth. Instead, we allow the depth gradient
at the end of the border to go to zero, making the runoff rate propor-
tional to the slope (Eq. 5). This method of handling the lower boundary
is somewhat arbitrary since it depends on conditions beyond the bor-
der’s limits which are seldom specified (e.g., sudden drop in elevation
into a conveyance ditch) and precludes significant runoff from un-

178



——
| —
qg 1
n A e
&1‘ 3f —d 1
-k
N - ,
B e
b
O
1 M
h L . s 12
d T e PR
p
R ""—"”““Pkw

FIG. 1.—Ildeallzed Profile of Irrlgated Border: {a) Advance Phase; (&) Hecession
Phase. Parameters Dafined In Test

blocked level borders. However, for most sloping borders, this approach
is a good approximation to the lower boundary condition, and un.
blocked level borders are seldom found in practice.

For blacked borders, a zero flux boundary condition is used at the end
of the border during storage and recession. However, Eq. 8, with C,
found explicitly from the previous time step, is unsatisfactory for cal-
culating the water depth in the lower reaches where water is backing
up. This is because the water depth increases rapidly at the border end,
causing a reversal in the surface water elevation gradient, and thus, di-
rection of flow which cannot be handled by this simple model. To ac- [
count for blocked borders we instead assume that for the lower portion
of the border where water is backing up {reaches k through r, Fig. 1(b)]
the surface water elevation has a zero gradient, and thus, the water is
no longer flowing. A volume balance is maintained for these reaches
where the volume of water flowing into the stagnant reaches equals the
change in surface and infiltrated water volumes for the reaches over any
time increment. In effect, this approach is analogous to letting C, de-
crease to zero as the water backs but letting the surface water redistrib-
ute instantly to maintain a zero surface water elevation gradient.

In our notation, the volume balance for these reaches can be written
as:

S AxhE Ry = (b !
Co 3P = E,( ‘ z‘m ( . ‘2; WA 21

Remembering that the surface water elevation is horizontal over these
reaches, we can express all unknown water depths in terms of 1, the
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depth at the end of the border. Eq. 21 can then be rearranged and solved
explicitly for b} .

2&3,(:,,(_1 hk—l - 25;* Gy Sy

B = e {22)
i
WIth Sy = D Vi (23)
LT
Sy = —Amdie + 2 ARt Boy) o (24)
fal
A= Ax > AR e (25)
=kt
and 3, = E S A A 1) e (26)
imgdl

where p; = the distance from reach i to the end of the border.

Since no backward flow is allowed in the model, the position of the
first ponding reach, k, is determined by checking that the surface-water
elevation at £ is less than or equal to that at k ~ 1 and decreasing £ when
this is no longer true. For the rest of the border, during the recession
phase, Eq. 8 is used to calculate the water depths. However, the upper
boundary condition changes at this point since g, = 0.0 and Eq. 19 is no
longer valid. Instead, the surface-water elevation at the head of the bor-
der is assumed to become horizontal while the volume balance is main-
tained, requiring the volume of water leaving the first reach to equal the
change in surface and infiltrated water in the reach for any time incre-
ment. This condition can either propagate down the border or dissipate,
depending on the hydraulic conditions of the imrigation. While a hori-
zontal surface-water elevation condition exists near the inlet, the water
depth over this portion of the border {reaches d through f, Fig. 1{b)] is
found in a manner similar to that for a blocked border. The depth, A},
is calculated from a volume balance equation, and the position of f is
found by requiring that the surface-water elevation at f be higher than
or equal to that at f + 1. This method allows for a smooth draining of
the border after a sudden change in the boundary condition.

Resuts

Four aspects of a border irrigation model can be readily tested: the
predicted advance and recession times, infiltration and runoff volume,
and surface water depth. Ideally, we would like to test the model against
observed irrigation behavior over a wide range of conditions. However,
this kind of data is rarely available in the literature. Instead, we will
compare the model with measured results and several earlier models for
four well documented border irrigations.

In the first example the irrigation of a blocked border deseribed by
Clemmens (6) was simulated {McDonnell Farm, #6, irrigated on 6/9/
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FiG. 2-—Caloulated and Observed Advance and Recesslon Times for McDonnell
Farm Border #8. Caiculated Curves Are from Mode| Described in this Paper, 2.1.0,,
and Zero-Inertls Model Described by Katopodes and Strelkof! (16), Z.L1 During
Recession, Upper Z.LD. Curve Is for Ax = 11.8 m, Lower Curve Is for Ax = 1.45
m, and Infermediate Curve Is for Ax = 1.45.and 2.9 m

77). The border was 610-ft {185.9-m} long with a slope of 0.00033 and a
Manning roughness coefficient, n = 0.15. The inflow rate was measured
at 0.0871 sq ft sec™ {0.00809 m* 57') and lasted for 58 min. Bq. 11 was
used to describe the infiltration rate with § = (.00260 ft sec™® {0.0791 cm
57, b = 0.52, and A = 0.0. To demonstrate the sensitivity of the model
to the size of Ax, four simulations were run for this irrigation with 4f in
Eq. 20 chosen so that Ax was approximately 1.45, 2.9, 5.8, and 11.6 m.

Advance and recession times for the simulations are shown in Fig. 2.
Also shown are the measured values and the results found by Clem-
mens {6) using the zero-inertia model (Z.11.) described by Katopodes
and Strelkoff (16) with a spacing of approximately 2.9 m/reach. Agree-
ment between the four simulations of the Z.1.D, model, the Z.1.1. model,
and measured advance times is excellent with the five simulations form-
ing a single line in Fig. 2. During recession, the reach size had an effect
on the calculated recession front. Results for Ax = 1.45 and 2.9 m are
virtually identical, but a Ax of 5.8 m increased the recession times by
less than 10 min, while a Ax of 11.6 decreased the times by less than 10
min. All four recession times are slightly larger than those calculated
with the Z.11. model, but all fit the observed data well. The discrepancy
between the observed and modeled recession times is not surprising
considering the difficulty of measuring recession and that constant, spa-
tially uniform values for n, 5, b, and 5, were used in the models.

A second simulation was run using data from Atchison (1) presented
in Clemmens (7) for-the border V-5, irrigated at the Univ. of Arizona,
The unblocked border was 300-ft (91.44-m) long with an average slope
of 0.0011 and n = 0.08% and was divided into reaches of 2.2 m average
length. The inflow rate was 0.0156 sq ft sec™! (0.00145 m* s™*) and lasted
for 140 min. The infiltration parameters used were § = (.00109 ft sec™®
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FIG. 4~—Calculated and Observed Ponding Depth versus Time from Stard of Ir-
rigation for Point 36.6 m below Head of Border

(0.0332 em s7%), b = 0.444, and A = 0.0. Fig. 3 shows the advance and
recession times for the border where again the measured values and the
results of the Z.LD. and Z.L1 maodels are shown. As in the first ex-
ample, agreement is good between the models and the measured data
during both phases of irrigation.

Predicted and measured surface-water depths as a function of time
were compared for three locations along this border; 27.7, 111.6, and
195 {1 {9.1, 36.6, and 64.0 m). Results were similar at the three positions
and are shown in Fig. 4 for the 111.6-ft (36.6-m} [ocation only. The Z.1.D,
model predicts the depth well, especially during the first 50 min of ir-
rigation when the gradual increase in depth following the initial rapid
jump is accurately predicted. :

The predicted infiltration depths from the Z.1.D. and Z.L1. models are
shown in Fig. 5 for this irrigation. Agreement between the two models
is excellent as expected since both used the same infiltration equation
and the predicted opportunity times are nearly identical (Fig. 4).

The third irrigation modeled, AR-15, was presented in Basseit and
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FIG. 6—0bserved Advance and Recesslon Tlmes for Border AR-15 and Simu-
Inted Results Calculated with Z4.D. and ZLL Modsls and Full Dynamic Models of
Bassell and Fikzsimmons (3), F.D.B., and Katopodes and Strelko#f (12), FO.K,

Fitzsimmons (3) from data by Roth (12). The border was unblocked, 300-
ft (91.44-m) long, had a Manning roughness factor of 0.024, and an ay-
erage slope of 0.0010. The average reach was 1.7 m long. Water was
applied at a rate of 0.053 sq ft sec™ (0.00328 m* s7%) for 38 min. The
infiltration parameters used were S = 0.0199 it sec™ (0.067 cm s7%), b =
(.2716, and A = (.0, Fig. 6 shows the measured advance and recession
times for this irrigation. Also shown are the predicted times from the
Z.LD. and Z L1. models and the full dynamic models of Katopodes and
Strelkoff (10} and Bassett and Fitzsimmons (3), £.D.K. and F.D.B,, re-
spectively. All models predicted the advance phase very well. During
recession, predicted times were not as good nor do the models agree
with each ather exactly. Both fully dynamic models predict the recession
to occur sooner than observed, while the Z.1.D. and Z.1.1. models pre-
dict slower recession times. The average overestimation of opportunity
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FIG. 7.—0Observed Advance and Becession Times for Border CRC-1 and Caleu-
lated Values Using Models Z.LD. and 214

time by the Z.1.13. model for the first 73 m of the border was 7 min or
17% of observed epportunity time,

The last irrigation simulated (CRC-1} was on a level border located at
the Cotton Research Center in Phoenix, Arizona, and was conducted by
A. |, Clemmens (personnal communication)., The blocked border was
610-ft (185.9-m) long, had a Manning roughness factor of £.183, and had
water applied at a rate of 0.067 sq {t sec”’ (0.00627 m’ s7') for 53 min.
The infiltration parameters used were 5 = 0.00194 {t sec™ (0.059 em 577,
b = (.511 and A = 0.0. The average reach was 2.4 m long. Fig. 7 shows
the observed advance and recession times and the predicted results from
the Z.L.D. model. Also shown are the results of the Z.1L1. model for the
same conditions. Agreement between predicted and observed times is
very good for both models on this level border.

The mass balance for the Z.11. simulation is also very good for this
irrigation as well as the previously described irrigations with the cal-
culated infiltrated plus runoff volumes being within +0.5% of the ap-
plied volume. The simulations are also computationally fast. Table 1
compares the computation times for this model and the Z.1L1. model on
an HP-1000 computer. The models weré run with the same number of
reaches for each simulation and yielded results of comparable accuracy.
Although not a rigorous comparison of the two models, the computation
times are of similar magnitude and are considerably faster than existing
full dynamic models (16}.

TABLE 1.-—Computation Times Required an HP-1000 for Four Example Borders

Example borders Z.LD. {sec) Z.LL {sec}
iy {2) (3}
McConnell #6 55.0 95.0
V5 21.0 31.8
AR-15 22.3 18.2
CRC-1 #82.9 1334
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ConcLusions

We have presented a model for describing the complete border irri-
gation cycle. The model is designed for blocked or unblocked slaping
borders and for blocked level borders. The model can simulate irrigation
on borders with variable slopes but cannot handle negative slopes or
reversals in the direction of water flow. The model solves the combined
equations for the conservation of mass and momentum with the accel-
eration terms removed. This model differs from earlier models in that
the differential form of the combined Saint-Venant equations is solved.
The model also simplifies the expression for the depth gradient by using
an explicit value, averaged over the entire wetted border. Comparisons
of results obtained with this model to other models and field data show
the model to be very stable and to give equally accurate values for ad-
vance and recession titiies and thus total opportunity time for infiltration
over a range of conditions including level slopes. Water depths during
irrigation also appear.to be closely reproduced despite the use of a very
simple shape factor (a linear fit between successive reaches). This model
is also conceptually very simple and easy to program, requiring ap-
proximately 450 Fortran statements and 40K bytes of memory, making
it adaptable te many small computing systems,
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AppeEnpiX I —MoTATION

The following symbols are used in this paper:
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infiltration coefficient (LT7%);

sum of reaches (L)

infilfration power coefficient;

Chezy C (L¥2T1);

effective Manning coefficient (L'°T);

units conversion factor {L°T7";

linear advance rate (LT™');

acceleration of gravity (LT™%);

depth of water {L);

cumulative water infiltrated per unit area {L);
furthest distance between water-covered reaches (L)
dimensionless Manning roughness coefficient;
distance between reach and end of border {L);

flux rate per unit width (L%7'y;

infiltration coefficient (LT™%);

resistance slope (LL™");

bottom slope (LL™%);

water volume per unit width at start of time step (L?);
water volume per unit width at end of time step (L*);
sum of infiltration volume per unit width (L?);

time (T

infiltration volume per unit width {L%);

water velocity (LT1);

infiltration rate (LT %)

distance down border (L}; and

infiltration opportunity time (7).
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