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DETECTION OF OVERPARAMETERIZATION

AND OVERFITTING IN AN AUTOMATIC

CALIBRATION OF SWAT

G. Whittaker,  R. Confesor, Jr.,  M. Di Luzio,  J. G. Arnold

ABSTRACT. Distributed hydrologic models based on small‐scale physical processes tend to have a large number of parameters
to represent spatial heterogeneity. This characteristic requires the use of a large number of parameters in model calibration.
It is a common view that calibration with a large number parameters produces overparameterization and overfitting. Recent
work using prior information, spatial information, and constraints on parameters for regularization of the calibration
problem has improved model predictions using a few dozen parameters. We demonstrate that the Soil and Water Assessment
Tool (SWAT) and the information associated with a SWAT watershed setup provide a regularized problem with many of
recently published regularization techniques already utilized in SWAT. Our hypothesis is that the Soil and Water Assessment
Tool (SWAT) regularizes the inverse problem so that a stable solution can be obtained for calibration of SWAT using a very
large number of parameters, where very large means up to 10,000 calibration parameters. In this study, a two‐objective
calibration genetic algorithm based on a non‐dominated sorting genetic algorithm (NSGA‐II) was used to calibrate the Blue
River basin in Oklahoma. We introduce the use of intermediate solutions found by the genetic algorithm to test identification
of calibration parameters and diagnose model overfitting. Defining identification as the capability of a model to constrain
the estimation of parameters, we introduced a method for statistically testing for changes from the initial uniform distribution
of each parameter. We found that all 4,198 parameters used to calculate the Blue River SWAT model were identified.
Diagnostic comparisons of goodness‐of‐fit measures for the calibration and validation periods provided strong evidence that
the model was not overfitted.

Keywords. Automatic calibration, Distributed hydrologic model, NSGA‐II, Overfitting, Overparameterization, Regulariza-
tion.

istributed hydrologic models typically use param‐
eters that are not directly observed and must be
calibrated to the observed characteristics of a wa‐
tershed (Beven, 2000; Reed et al., 2004). Hydro‐

logical model calibration in this way is categorized as an
inverse problem, since the parameters that are used to predict
streamflow (and other parameters) are chosen using the ob‐
served streamflow. In some sense, calibration works back‐
wards from observation so that observed and predicted output
values are in agreement. As the hydrologic model increases
in complexity, the number of parameters in the model may in‐
crease to the point where overparameterization can result in
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overfitting and deterioration in prediction accuracy (Jake‐
man and Hornberger, 1993; Beven, 1993, 2006).

Approaches to hydrologic prediction have been catego‐
rized in two ways: (1) an upward or mechanistic approach, in
which small‐scale physical processes and landscape hetero‐
geneity are modeled as much as possible, and (2) a downward
or statistical approach (Schoups et al., 2008; Wagener et al.,
2007). When small‐scale physical processes are modeled
throughout a large, hetereogeneous landscape, the number of
parameters can become very large. For example, the Soil and
Water Assessment Tool (SWAT; Arnold et al., 1998) used in
this study is designed for simulation of agricultural practices,
fate and transport of soil and chemicals, and basin hydrology.
A study watershed is divided into subwatersheds, where each
subwatershed is characterized by hydrologic response units
(HRU). Each HRU is a unique combination of landuse/land‐
cover, soil, and slope. SWAT is categorized as a semi‐
distributed model because the output of each HRU is placed
at the mouth of the subwatershed that contains the HRU. By
choosing a small value for subbasin size, high‐resolution
simulations are possible, as well as the standard USGS HUC,
or other divisions of the landscape. Given the broad scope of
the physical processes that are included in SWAT, there are
several hundred parameters set by default for every HRU. In
this study, we used the Blue River basin in Oklahoma, which
is set up in SWAT with 55 subbasins and 193 HRUs. There are
over 4,000 total parameters to be calibrated, even if only
21�parameters  in each HRU are selected for calibration.

D
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The simulation of diverse regions also forces the use of a
large number of parameters. The SWAT literature database
for peer‐reviewed journal articles (https://www.card.ias‐
tate.edu/swat_articles/) has links to SWAT applications
(569�articles as of 30 October 2009) on all continents, and in‐
cludes most developed countries. Given this range of applica‐
tion, SWAT must have sufficient model complexity to
represent different hydroclimatic regimes worldwide (van
Werkhoven et al., 2009).

Overparameterization  is defined in statistics as the inclu‐
sion of redundant information, and the effect is to produce a
singular covariance matrix that cannot be inverted. This is a
serious problem for calibration methods that require matrix
inversion, but it is no obstacle for genetic algorithms. For ap‐
plication of the concept to hydrologic inverse modeling,
overparamerization  has been defined as the situation in
which the amount of information contained in a single hydro‐
graph used for calibration is not enough to estimate a large
number of parameters (Jakeman and Hornberger, 1993). This
definition is a special case of the statistical definition.

An overparameterized calibration can produce an over‐
fitted model. Overfitting refers to a circumstance in which a
model starts fitting the noise in the calibration data set, as
well as the calibration observations. The result of an over‐
fitted model is a reduced error for the calibration data set, but
larger errors in validation and prediction with other data sets.
For example, if a model has been overfit to a five‐year hydro‐
graph for 1995‐2000, the predictions of the model for other
time periods will be worse than would be expected based on
the goodness‐of‐fit of the calibration. While increasing the
number of parameters that are used in a calibration makes it
more likely that overfitting will occur, note that this defini‐
tion is independent of the number of parameters.

The issue of overparameterization and overfitting must be
resolved before meaningful analysis of sensitivity and uncer‐
tainty can be accomplished. If a model is overparameterized
and/or overfitted, the parameter estimates and error estimates
will be unreliable. A calibrated model that is not overparame‐
terized or overfitted is a necessary condition for sensitivity
and uncertainty analysis.

Tikhonov regularization (Tikhonov and Arsenin, 1977), a
method of adding linear constraints to a problem, has been
used in hydrological studies with several variations to deal
with overparameterization and overfitting. The addition of
constraints allows the inclusion of prior information about
the parameters to be used in calibration, including equality
constraints and limits on the range of parameters. Constraints
can alleviate overparameterization by constraining the feasi‐
ble region of parameters. For example, in the absence of regu‐
larization,  if two correlated parameters have the same range
of values, there will almost certainly be overparameteriza‐
tion. If the parameters are constrained by regularization to
different ranges, overparameterization disappears. Con-
straints on parameters and their interaction by regularization
can in effect create a filter that only responds to the signal
(hydrograph) and ignores the noise, eliminating overfitting.
Useful extensions of the regularization method include addi‐
tion of linear constraints where the parameters are weighted
in comparison with observed parameters (Doherty and Ska‐
hill, 2006; Tonkin and Doherty, 2005) and spatial regulariza‐
tion to constrain the feasible parameter space (Pokhrel and
Gupta, 2009; Pokhrel et al., 2008; Pokhrel et al., 2009). Mod‐
el coupling provides another method of regularization by

adding information from other physical processes that
constrain simulation of hydrologic processes. Hinnell et al.
(2009) find that independent geophysical properties in a geo‐
physical model coupled to hydrologic properties in an in‐
verse model can provide reductions in errors in hydrologic
predictions.

We observe that SWAT includes all of these methods of
regularization:  equality constraints, inequality constraints,
constraints on parameter bounds, prior information on a wide
range of geophysical data, all data spatially referenced, and
independent physical processes linked to hydrology. Some
examples of the regularization properties of SWAT are
(1)�coupled biological models, e.g., a plant growth model re‐
lating removal of water and nutrients from the root zone, tran‐
spiration, and biomass/yield production; (2) coupled bio-
physical models, e.g., the nitrogen cycle; (3) physical mod‐
els, e.g., evapotranspiration; (4) prior information, e.g., geo‐
referenced temperature, rainfall, and soil characteristics;
(5)�equality constraints on parameters, e.g., several hundred
parameters are set for each HRU by default in SWAT or with
prior information and will not be used in a particular calibra‐
tion; and (6) parameter bounds constraints, e.g., most param‐
eters in the model are limited to a specific range taken from
the literature, and it is common procedure in calibration to set
a parameter range acceptable to the analyst for the calibration
parameters.

The general objective of this article is to analyze the effect
of regularization provided by the SWAT model on calibration
with a large number of parameters. The specific objectives
are: (1) to test for the occurrence of overparameterization af‐
ter automatic calibration of SWAT, and (2) to determine
whether the resulting SWAT models calibrated with a large
number of parameters are overfitted. We present the methods
used to achieve these two objectives, and the results and sta‐
tistical inferences associated for each of the objectives. If a
model is overparameterized and/or overfitted, the results of
sensitivity and uncertainty analysis will almost certainly be
invalid, and the analyst should turn to parameter reduction or
other regularization techniques. The analysis in this study is
only the first step in the evaluation of an automatic calibra‐
tion. This study does not include sensitivity analysis, parame‐
ter selection, and uncertainty analysis since these concepts
are not necessary in testing for overfitting and overparame‐
terization.

In the next section, we state our hypothesis and contribu‐
tion to the literature. The study area is described in the fol‐
lowing section. The multiobjective automatic calibration
method using a genetic algorithm is summarized in the sec‐
tion titled “Multiple‐Objective SWAT Calibration Ap‐
proach.” The statistical test for identification and over-
parameterization  that we developed for genetic algorithms is
explained and applied in the section titled “Nonparametric
Test for Identification.” Summary statistics of model predic‐
tion error are compared in the “Diagnosis of Overfitting” sec‐
tion, and the results are used to draw inferences about the
hypothesis in the conclusion.

HYPOTHESIS AND EXPERIMENTAL DESIGN
Our hypothesis is that the Soil and Water Assessment Tool

(SWAT) regularizes the inverse problem so that a stable solu‐
tion can be obtained for calibration of SWAT using a very
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large number of parameters when set up with spatially refer‐
enced information for the simulation watershed.

Our primary contribution to the literature is the evaluation
of the above hypothesis. As discussed earlier, it is not gener‐
ally expected that inclusion of a large number of parameters
in calibration will result in a simulation model with good
forecasting capabilities. If it can be shown that SWAT is ade‐
quately calibrated even with the use of a large number of pa‐
rameters, then automatic calibration is rather simple to
implement,  and it becomes an attractive alternative to the
time‐consuming and computationally expensive process of
parameter reduction. If the hypothesis is accepted, one could
expect a calibration to be more representative of similar wa‐
tersheds where data were not available, since it is less likely
that a necessary parameter has been omitted in the process of
parameter reduction.

To test our hypothesis, we statistically analyze the inter‐
mediate solutions and the time path of the optimization algo‐
rithm. To our knowledge, this is the first time that this
information has been used in a study of hydrologic models,
and we could only find one other study that looked at the in‐
formation produced during the optimization search (Marse‐
guerra et al., 2003). In the analysis of the intermediate data
produced by the optimization algorithm, we demonstrate a
novel statistical procedure for testing for overparameteriza‐
tion, and we introduce a simple qualitative method of testing
for model overfitting.

BLUE RIVER STUDY WATERSHED
We selected the Blue River watershed located in southern

Oklahoma. It is narrowly extended with a draining area of
around 1233 km2 and is characterized by a gentle topography
(fig. 1). The elevation ranges from around 427 m to about
154�m at U.S. Geological Survey (USGS) gauging station
7332500 at the outlet of the watershed near the city of Blue.
The soils of the watershed are characterized by very high vol‐
umetric clay content (Smith et al., 2004). Analysis of the digi‐
tal landuse/landcover data set used in this study yielded a
dominant distribution of natural or semi‐natural (35%) and
planted or intensively managed herbaceous vegetation
(32%), deciduous forest (23%), evergreen forest (3%), crop‐
land (2%), and irrelevant portions of urban and rangeland
areas.

Smith et al. (2004) report a mean annual precipitation of
1036 mm and a runoff coefficient, estimated from annual
data, of 0.17. The Blue River watershed is a particularly chal‐
lenging case study. The narrow shape of the watershed im‐
poses precise precipitation field records. Note that the
hydrologic behavior in the watershed area is affected by a
high hydrogeologic complexity (Smith et al., 2006). This in‐
fluence appears particularly remarkable at the upstream
reaches, where USGS discharge station 7332390 near Con‐
nerville is located (fig. 1).

SIMULATION CONFIGURATION

We used the SWAT model version 2005. The model is ex‐
tensively illustrated in Neitsch et al. (2005). We set the model
with the Green and Ampt infiltration method with an hourly
simulation time step (Di Luzio and Arnold, 2004a). We used
a GIS software tool to configure the input data for AVSWAT‐
X (Di Luzio and Arnold, 2004b; Di Luzio et al., 2004), to de-

Figure 1. Location of the Blue River watershed. The two USGS discharge
stations in the watershed are depicted.

lineate streams and subbasins, and to define the HRUs re‐
quired by the model simulation. We used the following digi‐
tal data sets: 30 m National Elevation Dataset DEM (Gesch,
2007; Gesch et al., 2002), 30 m USGS National Land Cover
Data (Vogelmann et al., 2001), and STATSGO (State Soil
Geographic Database) 1:250,000‐scale soil map layer
(USDA, 1992). Using the interface, we identified and estab‐
lished a topography‐driven connection of 55 subbasins con‐
taining 193 HRUs. Proper vegetation and soil hydraulic
parameters were extracted from a database included in the
model and from the soil parameters estimated using the
MUUF (Map Unit User Files) method (Baumer et al., 1994)
respectively.

Climatic input data included hourly precipitation records
at each subbasin. We calculated the records as mean areal val‐
ues for each subbasin using the hourly 4 km × 4 km radar
grids taken from the Distributed Model Intercomparison
Project (DMIP‐2, initiated by the National Weather Service)
(Smith et al., 2006) and the respective HRAP (Hydrologic
Rainfall Analysis Project; Reed and Maidment, 1999) coor‐
dinate system. Daily air temperature data were associated to
the closest measuring gauge part of the NCDC Cooperate Ob‐
server Stations network.

MULTIPLE‐OBJECTIVE SWAT
CALIBRATION APPROACH

We used the method of automatic calibration described by
Confesor and Whittaker (2007). The method is an imple‐
mentation of the nondominated sorting genetic algorithm
(NSGA‐II, Deb et al., 2002a), a fast and efficient multiple ob‐
jective optimizing algorithm characterized by a nondomi‐
nated sorting algorithm, an elitist selection method, and the
elimination of a sharing parameter. NSGA‐II assigns fitness
by Pareto ranking (or nondomination) and crowding distance
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to the combined parent and child populations. The solution
is then ranked by domination, where a solution X1 dominates
another solution X2 if two conditions are satisfied (Deb,
2001): (1) the solution X1 is no worse than X2 in all objec‐
tives, and (2) the solution X1 is strictly better than X2 in at
least one objective. Crowding distance is the average dis‐
tance between an individual and its nearest neighbors in the
search space. In minimization problems, each solution is
ranked by the number of solutions that dominate it. Those
that are dominated by a large number of solutions will have
a lower fitness and a lower chance of surviving in the popula‐
tion. In cases where the solutions have the same nondomina‐
tion rank, the solution with larger crowding distance is
preferred, ensuring a diverse population spread across the Pa‐
reto optimal front.

The genetic algorithm was set up with a population of
100�individuals,  where each individual was a set of calibra‐
tion parameters. Each individual consisted of 4,198 values,

the total number of parameters used in calibrating the model.
The genetic algorithm was real‐coded to simplify parameter
representation. We found that a population of 100 converged
as fast as using 200 individuals. In a genetic algorithm, muta‐
tion is the random substitution of values into the genome, and
cross‐over is the mathematical representation of sexual re‐
production. For real‐valued genomes (many genetic algo‐
rithms use binary values in the genome), various schemes of
linear combination of genes from two parents are used as a
cross‐over operator. In our study, the probability of mutation
was 0.1, and we used the PCX cross‐over operator with a level
of 3 (Deb et al., 2002b). The algorithm is programmed in the
R statistical language (R Development Core Team, 2007).
Our previous simulation runs showed that the calibration sta‐
bilized after 250 generations characterized by no apparent
change in the Pareto optimal front. However, in this study, we
stopped after 1,000 generations as added insurance that no
significantly better solutions could be found.

Table 1. Parameters used in calibration of the SWAT model of the Blue River, initialization range and geographic resolution.
Parameter Definition Limits[a] Resolution[b]

PHU Heat units to bring plant to maturity 0.0 ‐ 1500 HRU
SOL_K Saturated hydraulic conductivity (mm/h) 0.75 ‐ 1.1* HRU_S

SOL_AWC Available water capacity (mm/mm) 0.75 ‐ 1.1* HRU_S
SOL_CRK Crack volume potential 0.0 ‐ 0.3 HRU

CH_N2 Manning's n for main channel 0.014 ‐ 0.075 Sub
OV_N Manning's n for overland flow 0.1 ‐ 4.0 HRU

CANMX Maximum canopy storage (mm) 0.0 ‐ 5.0 HRU
ESCO Soil evaporation compensation factor 0.1 ‐ 1.0 HRU and W
EPCO Plant water uptake comp. factor 0.1 ‐ 1.0 HRU and W

REVAPMN Threshold depth (mm) 0.001 ‐ 200.0 HRU
ALPHA_BF Baseflow alpha factor (days) 0.04 ‐ 1.0 HRU
GW_DELAY Groundwater delay time (days) 0.0 ‐ 60.0 HRU
GW_REVAP Groundwater revap coefficient (days) 0.02 ‐ 0.20 HRU

SURLAG Surface runoff lag coefficient 1.0 ‐ 21.0 W
MSK_CO1 Calibration coefficient 0.0 ‐ 3.0 W
MSK_CO2 Calibration coefficient 0.0 ‐ 5.0 W

MSK_X Weighting factor 0.0 ‐ 0.50 W
TRNSRCH Transmission loss 0.10 ‐ 0.90 W

EVRCH Reach evaporation adjustment factor 0.10 ‐ 0.90 W
SLSUBBSN Average slope length (m) 0.75 ‐ 1.25* HRU

SLSOIL Slope length for lateral slope length (m) 0.0 ‐ 30.0 HRU
HRU_SLP Average slope steepness (m/m) 0.75 ‐ 1.25* HRU

TIMP Snow pack temperature lag factor 0.01 ‐ 1.00 W
SMFMN Minimum melt factor for snow (mm/°C day) 1.4 ‐ 6.9 W
SMFMX Minimum melt factor for snow (mm/°C day) 1.4 ‐ 6.9 W
CHL_1 Longest tributary channel length in subbasin 0.75 ‐ 1.25* SUB
CH_S1 Average slope of tributary channels 0.75 ‐ 1.25* SUB
CH_W1 Average width of tributary channels 0.75 ‐ 1.25* SUB
CH_N1 Manning's n for the tributary channels 0.75 ‐ 1.25* SUB
CH_K1 Effective hydraulic conductivity of tributary 0.025 ‐ 10.000 SUB
CH_L2 Length of main channel 0.75 ‐ 1.25* SUB
CH_S2 Average slope of main channel 0.75 ‐ 1.25* SUB
CH_W2 Average width of main channel 0.75 ‐ 1.25* SUB
CH_D Average depth of main channel 0.75 ‐ 1.25* SUB

CH_K2 Effective hydraulic conductivity of main channel 0.025 ‐ 10.000 SUB
CH_WDR Channel width to depth ratio 0.75 ‐ 1.25* SUB

ALPHA_BNK Alpha factor for bank storage recession curve 0.001 ‐ 0.990 SUB
GWQMN Threshold depth of water in shallow aquifer 0.000 ‐ 200.0 HRU

RCHRG_DP Recharge to deep aquifer 0.0 ‐ 1.0 HRU
GW_SPYLD Specific yield for shallow aquifer 0.001 ‐ 0.009 HRU

[a] Parameters marked with an (*) are multipliers of the default value in the SWAT model setup.
[b] W = watershed, Sub = subbasin, HRU = HRU, and HRU_S = HRU soil layer.
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For application to automatic calibration of SWAT, we used
parameters selected by experts. Some of the parameters were
multipliers of the default values, and others were the actual val‐
ue used in SWAT. Where multipliers are used, the parameter
values are ensured to be within the reasonable range derived
from the geographic information on soils and land use used in
the initial setup of the model using the ArcGIS interface. The
range of the remaining parameters is restricted to values consid‐
ered reasonable in the opinion of the authors. The population of
the genetic algorithm was initialized by random draws from the
ranges given in table 1. Two objectives were defined for the
evaluation, based on an automatic baseflow filter (Arnold et al.,
1998) separation of two components of flow, i.e., event driven
and base flow. The streamflow was designated as driven when
the automatic filter first‐pass base flow was <80% of the ob‐
served streamflow; otherwise, the streamflow was classified as
nondriven (Boyle et al., 2001). Minimizing the root mean
square error (RMSE) of the predicted base flow was defined as
one objective function. The second objective function was
minimizing the RMSE of the predicted event driven flow.
RMSE was defined as:

 ∑
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where n is the number of time steps with peak or low flow
events, Qobs,i is the observed streamflow at time i, and Qsim,i
is the simulated streamflow at time i. We are aware that other
approaches to model calibration offer advantages when anal‐
ysis of sensitivity and model error diagnosis are important
(Vrugt et al., 2009). However, our objective for this study was
to provide forecasts with no error terms or other related statis‐
tical analysis. This is a common situation in application of
hydrologic models, especially in consulting.

For the production of a single forecast, an individual from
the Pareto optimal front is selected based on the preferences
of the analyst. Where there is no reason to prefer one objec‐
tive over another, we choose an individual that weights the
two objectives approximately equally.

NONPARAMETRIC TEST FOR

IDENTIFICATION
Identification  is the capability of the model to constrain

the parameters used in the model (Doherty and Hunt, 2009).
Following a suggestion by Marseguerra et al. (2003), we
saved the values of the population and their evaluations at
each generation of the genetic algorithm. Marseguerra et al.
(2003) demonstrated that the evolution of a parameter in a ge‐
netic algorithm indicates sensitivity by the narrowing of the
variance of the population of values of that parameter, and the
order in which the change of variance occurs. We extend their
work with the observation that a reduction in variation for the
population of a parameter means that the genetic algorithm
has constrained the range of estimated parameters. This is in
effect the definition of identification that Doherty and Hunt
(2009) suggested. This concept is illustrated in figure 2,
where one parameter in the model is identified (dashed line)
and shows considerable reduction in variance in the popula‐
tion. The parameter that is not identified (solid line) shows
little change in the variance of the parameter value in the pop‐
ulation.

Figure 2. Comparison of change in the variance of two parameters' values
with differing sensitivity during calibration using a genetic algorithm.

We apply a nonparametric test of equality of distribution
combined with discriminant analysis to construct a novel
procedure for statistically testing parameters for identifica‐
tion. We claim that the parameter is identified when the dis‐
tribution of parameter estimates is significantly different
from the uniform distribution used for the initialization of all
parameters.

The basis for our proposed test identification is the fact
that different combinations of parameter values will result in
different probabilities of being retained in the genome due to
selection at the evaluation stage of the genetic algorithm.
Where a parameter has no effect on the fitness of genome,
there is said to be no selection pressure on that parameter.
That is, no matter what the value of the parameter, the proba‐
bility of survival of the individual in the population is not af‐
fected. In a genetic algorithm, the lack of selection pressure
results in an unconstrained parameter, by our definition a pa‐
rameter that is not identified. To illustrate the distribution of
a parameter that is not identified, i.e., a parameter with no
selection pressure, we added a dummy parameter to the ge‐
nome of the genetic algorithm. This dummy parameter had
no effect on the evaluation of the objectives. Nonparametric
density estimation using the averaged shifted histogram
(ASH; Scott, 1992) provides a convenient method to visual‐
ize the change in distribution of a parameter during the evolu‐
tion of the optimal solution set. Figure 3 shows the
distribution of this dummy parameter with a population of
100 through 500 generations, where the parameter was ran‐
domly initialized between 0 and 1500. Note that the distribu‐
tion, with minor variations, remains constant and
approximately  uniform throughout the optimization. The ef‐
fect of identification on the distribution of a parameter is ob‐
vious in figure 4, where a uniform distribution was quickly
constrained at about generation 50, and shifted and narrowed
even more at generations 250 to 350. Since the genetic algo‐
rithm used for calibration was initialized with a uniform dis‐
tribution of parameter values in the feasible space, and we
know that without selection pressure the distribution will not
change, any observed change in the distribution of values of
parameter indicates that the parameter has been identified
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Figure 3. Kernel density estimate of probability distribution function of population of a dummy parameter through 500 generations.

Figure 4. Kernel density estimate of probability distribution function of population of ALPHA_BNK in Subbasin 1 through 500 generations.

(i.e., constrained by the model during the optimization). We
take advantage of this fact to statistically test all parameters
for identification.

The procedure that we followed for this test is:
1. Save the calibration parameters and simulated flows

for each individual in the population at each genera‐
tion.

2. Choose a generation to serve as baseline for intergen‐
erational comparison of the distribution of values of
each calibration parameter.

3. Calculate the stochastic equality hypothesis test statis‐
tic between the baseline generation and all other gener‐
ations, for each parameter.

4. Calculate the time path for the stochastic equality hy‐
pothesis test statistic for each parameter.
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Figure 5. Comparison of dispersal of population values for alpha_bnk (HRU 10) in the initial draw and after 400 generations.

Figure 6. Time path for dummy parameter 562 (no effect on model output) of probability of stochastic equality of every tenth generation with generation
250.
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Figure 7. Time path of probability of stochastic equality of every tenth generation with generation 250, alpha_bnk, HRU 10.

5. Evaluate four descriptive measures of the time path of
the test statistic for each parameter.

6. Apply linear discriminant analysis to identify
constrained and unconstrained parameters.

7. If all parameters are constrained, then the model is not
overparameterized.

From cross‐sections of the distributions shown in figures�3
and 4, it is easy to see that the distribution in a given genera‐
tion is not normal, and the use of a measure of variance based
on the assumption of normality is inappropriate. Figure 5
shows the non‐normality of the distribution of values of an
identified parameter at different generations. Therefore, a
test for a change in distribution between generations cannot
be based on assumption of normality or other distributions.
Reiczigel et al. (2005) introduced a test of stochastic equality
of two non‐normal populations based on the bootstrap. Sto‐
chastic equality is based on the probability that two non‐
normal distributions are the same. The function is available
in R code at: www.univet.hu/users/jreiczig/brw/ (accessed
11�November 2009).

To statistically test for a change in a parameter distribution
during optimization, we ran the method of Reiczigel et al.
(2005) to test for stochastic equality. Tests of stochastic
equality calculate the probability that two non‐normal dis‐

tributions are the same. More formally, the hypothesis test is
H0: P(X < Y) = P(X > Y) against )()( YXPYXP >≠< , where
the equality and inequality relations are called stochastic
equality and stochastic inequality. The test statistic is based
on the rank Welch statistic (trw). We applied the test to
compare the distribution of parameters in generation 250
with all others in the first 500 generations using a thousand
bootstrap samples for each test. To establish a baseline for
comparison, we ran the calibration algorithm for 500 genera‐
tions with 4,198 dummy parameters, i.e., no SWAT parame‐
ters were used. The hypothesis test results for a population
size of 100 in each generation with 4,198 parameters for each
individual are displayed in figure 6. Each generation has the
test statistic of 4,198 comparisons of stochastic equality with
that of generation 250. The choice of generation 250 was ar‐
bitrary, and any other generation should lead to the same con‐
clusions. The y‐axis shows the probability that the
distribution of each parameter differs from the distribution of
that parameter in generation 250. A small number of parame‐
ters approach the 90% confidence limit. At the 5% confi‐
dence limit for both tails, where the change in the distribution
is significant, there are no dummy parameters. The pattern
that we expect to see for parameters that are not identified is
represented by the path followed by dummy parameter 562.
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Figure 8. Principal components analysis of training set used in screening with linear discriminant analysis. Synthetic unconstrained parameters are
represented by “1”, and parameters selected randomly from the calibration data set are represented by “2”.

The test statistic shows that the distribution of each parameter
changes with generational remove, but in 250 generations
does not reach 95% level of significance for trw.

Figure 7 shows the results of the stochastic equality test ap‐
plied to the evolution of the distributions of the 4,198 parame‐
ters in the Blue River calibration. The difference in the general
pattern is immediately obvious, with a large number of signifi‐
cantly different distributions. The time pattern of the identified
parameter traced in figure 7 differs in its significance level from
the time path of the parameter lacking identification highlighted
in figure 6. However, we needed an automatic, statistical meth‐
od rather than visual analysis of 4,198 time paths to finally de‐
tect whether each parameter is identified. Based on many
visualizations, we chose four summary measures to describe the
behavior of the stochastic equality test through time. The mea‐
sures each show a different aspect of the speed and range of the
change in distribution when the genetic algorithm used the pa‐
rameter in the optimization. The measures are: (1) the sum of
the absolute value of changes in trw ; (2) the range, i.e., the big‐
gest change in trw � ; (3) max[abs(min/max)] of trw ; and (4) the
fraction of generations between 1‐150 and 300‐450, with trw be‐
tween 0.2 and 0.8.

To screen all parameters, we applied linear discriminant
analysis (LDA). LDA calculates the probability of an ob‐
servation belonging to a group, where the effect of a parame‐
ter is calculated by training the algorithm on a data set with
known categories (supervised classification; Venables and
Ripley, 2002). To apply LDA, the algorithm is “trained” on
a known sample and then applied to the remainder of the data.
We created a data set with 4,198 parameters that we knew
were not identified by running the calibration algorithm with
the evaluation step replaced by a draw from a uniform ran‐
dom distribution. In this case, the parameters could not have
any effect on the evolution of the solution and were not corre‐
lated with the evaluation. This procedure ensured that the dis‐
tribution of each parameter in the not‐identified data set

would have the characteristics of an unconstrained parameter
that was only changed through genetic drift. To apply LDA,
a training data set with known categories is required, but the
categories of the parameters in the calibration data set were
unknown. Since the categories in the calibration data were
unknown, we used principal component analysis (PCA), an
unsupervised classification method, to test if the calibration
data were in a second category that could be assumed to be
identified.  Figure 8 shows that PCA clearly identified two
categories in a randomly selected training data set. All of one
category is not identified (represented by “1” in fig. 8), and
the other category consists exclusively of calibration data
sets (“2”). We analyzed a large number of randomly drawn
training data sets and could find none that did not show the
same pattern. A test calibration run in which ten dummy pa‐
rameters were included in the genome with 4,198 SWAT pa‐
rameters gave the same result. The dummy parameters were
clearly in a different category from the SWAT parameters.
When mixed with synthetic not‐identified parameters, the
dummy parameters from the calibration were clearly catego‐
rized with the not‐identified parameters. Based on this evi‐
dence, we assumed that the parameters from the calibration
in the training data set represented identified parameters for
comparison with the not‐identified synthetic parameters.

We trained LDA on a random sample of 100 from each of
the two data sets and assumed that the unknown data set from
the actual calibration was identified and formed a second
category. When we applied LDA to the calibration data set,
every parameter was classified as identified. We ran the pro‐
cedure with ten different randomly selected training data
sets, with the same results each time. This result is strong evi‐
dence that all calibration parameters were identified, follow‐
ing the definition of Doherty and Hunt (2009). A sample of
dummy and synthetic not‐identified parameters was included
as a check on the method, and all were correctly classified in
every run.
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DIAGNOSIS OF OVERFITTING
Our approach to diagnose overfitting in calibration of a

hydrologic model is based on the well‐known effect that the
predictions of a model usually become worse when the num‐
ber of parameters is increased (Doherty and Hunt, 2009; Fab‐
er and Rajko, 2007). A corollary to this behavior is that when
a model is calibrated starting with random parameters, the fit
generally improves during the genetic algorithm's search for
a Pareto optimal set. During this part of the search, the fit of
the predictions will improve for both the calibration and val‐
idation data sets. When a model is overparameterized, at
some point the calibration will start fitting noise in the cal‐
ibration data set, and the fit of predictions for the validation
data set will degrade while the fit for calibration data set con‐
tinues to improve. For application of these observations to
diagnosis of whether a model is overfitted or not, we compare
calibration error measures and validation error measures
throughout the fitting of the genetic algorithm to see if degra‐
dation of the validation model fit can be observed. By follow‐
ing the change in fit as the genetic algorithm finds solutions
with smaller errors, we should be able to detect when the
model starts fitting noise.

Several criteria are commonly used in evaluation of the
accuracy of a model calibration and validation (Moriasi et al.
2007), including Nash‐Sutcliffe efficiency (NSE; Nash and
Sutcliffe, 1970), a measure of how close the simulated pa‐
rameter matches observations of the parameter of interest:
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where Yi�obs is the ith observation of parameter Y, Yi sim is the
ith value of the simulated value of Y, and Ymean is the esti‐
mated mean of parameter Y. A value of 1 is the best perfor‐
mance, greater than 0 is acceptable, and less than or equal to
0 is not acceptable.

RMSE was used in the objective function, but a related
measure is the RMSE normalized by the standard deviation
of the measured data, as recommended by Moriasi et al.
(2007). This measure is called the RMSE‐observations stan‐
dard deviation ratio (RSR) and ranges from 0 (perfect model
simulation) to large positive numbers for a poor simulation.
The RSR is useful for comparison of different constituents
with different scales and is defined as:
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Percent model bias (PBIAS; Gupta et al., 1999) is propor‐
tional to the tendency of model to over‐ or underestimate the
parameter of interest:
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Figures 9, 10, and 11 compare the RSR, NS, and PBIAS
measures of the models at selected generations between 1 and
2000, respectively. There are 100 individuals (combinations
of parameters used in the calibration) in each generation,
meaning that there are 100 calibrated models in each genera‐
tion that can be evaluated. We used the empirical mode (50th
percentile) of the goodness‐of‐fit measure in each generation
as a summary statistic for comparison. In all three figures, the
goodness‐of‐fit measure follows the pattern that would be ex‐
pected for a model that was not overfitted (Radtke and Wong,
2006). In the early generations, the fit improves very quickly
for both the calibration and validation data sets. The normal‐
ized root mean square error (RSR) continues to improve for
2000 generations for the calibration, while the validation
RSR stabilizes at a value of 0.58 by generation 500. The per‐
cent bias measure for validation approaches the best values
at around 200 generations, and the Nash‐Sutcliffe efficiency
for validation stabilizes at 500 generations. None of the three
measures shows the increase in errors that is expected if a
model is overfitted (Radtke and Wong, 2006).

The explanation for how the RSR measure of prediction
error can continue to improve in the calibration period while
remaining constant in the validation period can be seen in fig‐
ure 12, where the predicted flows for 800 hours in the valida‐
tion period for the best‐fitting individuals (using RMSE as
criterion) in generations 20 and 2000 are compared with the
observed flow in the validation period for 800 hours. The pre‐
dicted baseflow approaches the observed minimum flows
rather better after 2000 generations, but the results are mixed
in fitting the event flow peaks. At A, the peak prediction of

Figure 9. Comparison of calibration and validation goodness‐of‐fit: mode
of normalized root mean square error (RSR) of predictions for the cal‐
ibration and validation periods using the 100 parameter sets in selected
generations of the calibration genetic algorithm. The horizontal line is set
at the value of the mode of the predictions for the validation period using
the calibration from generation 2000.
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Figure 10. Comparison of calibration and validation goodness‐of‐fit:
mode of Nash‐Sutcliffe efficiency (NS) of predictions for the calibration
and validation periods using the 100 parameter sets in selected genera‐
tions of the calibration genetic algorithm. The horizontal line is set at the
value of the mode of the predictions for the validation period using the cal‐
ibration from generation 2000.

Figure 11. Comparison of calibration and validation goodness‐of‐fit:
mode of percent bias (PBIAS) of predictions for the calibration and val‐
idation periods using the 100 parameter sets in selected generations of the
calibration genetic algorithm. The horizontal line is set at the value of the
mode of the predictions for the validation period using the calibration
from generation 2000.

the younger model is poorer but in the right hour, while the mod‐
el at 2000 generations has come closer to the magnitude of the
flow but is offset two hours from observed maximum. At B, the
younger calibration overshot the observed peak and was offset
late; calibration to 2000 generations did not really improve the
prediction. At C, the prediction from the model in generation 2
is very good but deteriorates badly by generation 2000. At D,
SWAT underestimates the maximum, and calibration does not
improve the fit. The comparison of fits at E is similar to A, with
the fit improving with more generations. These results show that

Figure 12. Comparison of observed and predicted flows in a portion of the
validation period using parameters from the individuals with the lowest
RMSE in generations 20 and 2000.

Figure 13. Comparison of driven and non‐driven flow goodness‐of‐fit:
mode of Nash‐Sutcliffe efficiency (NS) of predictions for the calibration
and validation periods using the 100 parameter sets in selected genera‐
tions of the calibration genetic algorithm.

the error of predictions in the validation period may improve or
deteriorate in different parts of the hydrograph as the genetic
algorithm continues, but the overall effects on the RSR measure
cancel so that the measure remains approximately constant after
a certain number of generations. The NS measures show this be‐
havior only slightly, while the PBIAS measures do not show it
at all. It is also noteworthy that the calibration also yielded good
NS and PBIAS of the simulated results from the nested inner
subwatershed near Connerville, indicating that the method is
predicting a stable subbasin and does not distort the spatial dis‐
tribution of parameter values as well as the spatial distribution
of runoff and perhaps constituent concentration.
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It has been reported that the use of RMSE for a calibration
criterion is sensitive to peak flows and biases simulations in
the recession period (non‐driven flow) of the hydrograph
(Boyle et al., 2000), resulting in lower efficiency for the non‐
driven flow. We observe this effect in figure 13, where the
Nash‐Sutcliffe efficiency of the non‐driven flow in the val‐
idation period for this study is less than the driven. Apparent‐
ly, the use of two objectives, one for the driven flow and one
for the non‐driven flow, did not overcome this bias.

We define a model as overfitted when the model starts to
predict the variation from the observed value at each time
step, i.e., the “noise” in a general (not statistical) use of that
term. It seems extremely unlikely that SWAT prediction of
noise in one time series would be generalized enough to pre‐
dict the noise in a different time series. This is particularly un‐
likely where rainfall and temperature are important drivers.
However, there is nothing that says that this is impossible.
This seems like another point that supports the use of a statis‐
tical estimator for the model prediction errors, rather than the
simple difference of predictions and observations that is
widely used in hydrologic model calibration. Where the
structure of the errors is modeled, it may be possible to evalu‐
ate more precisely if, and how, the noise is fitted by the mod‐
el. This is the next step in our research in this area.

CONCLUSION
We tentatively accept the hypothesis that the Soil and Wa‐

ter Assessment Tool (SWAT) regularizes the inverse problem
so that a multiobjective calibration of SWAT using 4,198 pa‐
rameters is not overparameterized or overfitted in the ap‐
plication to the Blue River, Oklahoma, data set.

To investigate the success of our approach, we analyzed
the evolution of the calibration parameters. The solutions
found by the genetic algorithm at each generation of the cal‐
ibration provided information to test the identification of cal‐
ibration parameters and diagnose model overfitting.
Defining identification as the capability of a model to
constrain the estimation of parameters, we introduced a
method for statistically testing for changes from the initial
uniform distribution of each parameter. We found that all pa‐
rameters had statistically different distributions after calibra‐
tion and concluded that all parameters were identified.
Comparison of goodness‐of‐fit measures of predicted values
for the calibration and validation periods showed that be‐
cause of regularization of the calibration, SWAT was not cali‐
brated to model the noise in the calibration hydrograph and
therefore was not overfitted by calibration with 4,198 param‐
eters.

The statistical methods that we used in testing for over‐
parameterization  and overfitting are well known, but the ap‐
plication of those methods to information provided by the
evolutionary path of the calibration parameters is novel. Our
study was limited in that we did not address the issue of pa‐
rameter sensitivity and uncertainty. We intend to expand our
work using the information in the evolutionary time path of
a genetic algorithm calibration optimization to investigate
parameter sensitivity.

Our general conclusion is that calibration of large, com‐
plex physical models may not always require parameter re‐
duction to avoid overparameterization and overfitting. The
size and complexity of these models provide constraints that

regularize the calibration problem when many parameters
are used in a calibration.
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