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Non-destructive measurements of seed attributes would significantly enhance breeder selection of seeds
with specific traits, and could potentially improve hybrid development. A single kernel near infrared
reflectance (NIR) instrument was developed for rapidly predicting maize grain attributes, which would
enable plant breeders to quickly select promising individual seeds. With the overall goal being to develop
spectrometric calibrations, absorbance spectra from 904 to 1685 nm were collected from 87 maize
samples, with 30 kernels of each sample (2610 kernels total), representing a wide variability in the
essential amino acids tryptophan and lysine, crude protein, oil and soluble sugar contents. Average
sample spectra were matched to bulk reference values. Partial least squares regression (PLSR) calibration
models with cross-validation were developed for both relative (% dry matter) and absolute (mg kernel�1)
constituent contents. Similarly, models using bagging PLSR were developed. The best model obtained
was for relative crude protein content, with an R2p of 0.75 and a SEP of 0.47%. Kernel mass was also
highly predictable (R2p¼0.76, SEP¼0.03 g). Tryptophan, lysine and oil were less predictable, but showed
good potential for segregating individual seeds using NIR. Soluble sugar contents produced poor model
statistics. Bagging PLSR yielded models with similar levels of prediction.

Published by Elsevier Ltd.
1. Introduction

Maize breeding programs evaluate and select numerous genetic
traits while focusing on a few important desirable traits. While
analytical reference methods exist that can accurately quantify the
composition of bulk seeds, they are often destructive and require
a fairly large amount of material for analysis. Because there can be
significant variability in composition between seeds, even those
coming from the same breeding line, a non-destructive technique
that can sort individual kernels using various compositional traits
would be very useful for breeding research.
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Screening methods, such as near infrared reflectance spectros-
copy (NIRS), are currently used for rapid non-destructive
measurement of bulk constituent contents for a number of crops
such as wheat, maize, sorghum and soybeans. An early study by
Orman and Schumann (1991) compared NIR calibration methods
for predicting protein, oil and starch contents in both whole and
ground maize samples. They worked within a spectral range of
1100–2500 nm for reflectance and 680–1235 nm for transmittance
modes. While the best models were obtained from ground grain
reflectance data, they suggested that the transmittance mode for
whole grains might be more useful because of its greater speed of
analysis. Single kernel research by Cogdill et al. (2004) explored the
transmittance mode with hyperspectral imaging and obtained
a working prediction for moisture. However, they suggested that
further work was needed to obtain an acceptable prediction for oil
content. Similarly, Baye et al. (2006) explored near infrared trans-
mittance and reflectance spectroscopy methods to predict protein,
oil and starch contents from individual kernels of maize of several
different genotypes. They found that the transmittance mode was
not suitable for predicting kernel composition, whereas the
reflectance mode gave good predictive power when the absolute
amount of constituents per kernel was predicted. Calibrations for
maize vitreousness and dry matter degradability using NIRS in the
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Fig. 1. Prediction plots for the relative contents of (a) tryptophan, (b) lysine, (c) crude protein, (d) oil, (e) soluble sugar; and (f) kernel mass; B-samples from calibration set;
C – samples from prediction set.
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400–2498 nm range were investigated by Ngonyamo-Majee et al.
(2008). They concluded that NIRS can be used as a screening tool to
develop maize hybrids in large-scale breeding programs.
Armstrong (2006) developed a rapid single kernel NIR sorting
instrument for maize and soybean. Prediction models for moisture
of both seed types, and protein contents for soybeans were devel-
oped utilizing a spectrometric range from 906 to 1683 nm. Janni
(2007) and Janni et al. (2008) described other patented NIR
methods for seed analysis.

PLS regression models are commonly based on cross-validation
statistics to determine the factor levels for a model derived from
a single set of data. Bagging or ‘‘bootstrap aggregating’’ techniques
aim to reduce the variance of predictors by re-sampling the training
dataset with replacement into a number of learning sets, and
calculating a calibration model for each set (Viscarra Rossel, 2007a).
This has been shown to be useful for unstable regression models
and neural networks through the aggregation of a number of
versions of predictors (by averaging) over different model versions
(Breiman, 1996). Wehrens et al. (2000) discussed that cross--
validation, aside from being the most used method in chemo-
metrics, may be prone to large variability of prediction, particularly
when a small number of samples is used. In these cases, boot-
strapping techniques would be most useful since parameters are
computed from their central tendency estimates. For this reason,
both methods of model development were investigated and
compared herein.

The main objective of this study was to develop single kernel
constituent calibration models from reference bulk analyses of
tryptophan, lysine, crude protein, oil and soluble sugar contents for
maize from a wide range of breeding lines. Furthermore, we aimed
to evaluate the performance effectiveness of the rapid single kernel
NIR sorting instrument, and to compare standard partial least
squares regression (PLSR) with cross-validation and bagging PLSR
for model development.

2. Experimental

2.1. Maize samples

Eighty-seven maize breeding samples, representing a wide
range of size, shape, color and constituent compositions, were
obtained from the International Maize and Wheat Improvement
Center (CIMMYT, Texcoco, Mexico). Each maize breeding sample
was composed of 30 kernels, thus the experimental set consisted of
2610 kernels. A few samples did not have reference values for
a particular constituent, and were likewise removed from analysis
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of that constituent. All samples were allowed to equilibrate under
laboratory conditions (20 �C, 50% relative humidity) for at least
seven days. Afterward, images of the kernels were taken for
documentation. Mean kernel mass was determined by weighing
the bulk sample in an analytical balance and dividing by the
number of kernels.
2.2. NIR instrument and spectra acquisition

The instrument consists of an NIR spectrometer, a light tube
assembly, a control circuit and a computer, as shown in Fig. 1 The
CDI Spectrometer (Control Development, Inc., South Bend, IN) has
a thermoelectrically cooled InGaAs sensor with a spectral range of
904–1685 nm. It is controlled using a Microsoft Visual Cþþ 6.0
program using CDI’s dynamically linked program library. The light
tube assembly has 48 miniature tungsten light bulbs, arranged
equidistantly in six rows along the tube periphery. A fiber-optic
switch is used to monitor the passage of the kernels in the upper
portion of the instrument. A complete description of the
construction and operation of the assembly is provided in the paper
by Armstrong (2006). One difference between the instrument used
by Armstrong (2006) and that used in this study is that a bifurcated
fiber (BIF600 Vis-NIR; 600 mm core diameter; Ocean Optics,
Dunedin, FL, USA) collected spectra from both ends of the tube
rather than the single fiber previously used. These new optical
fibers are shielded from direct light since their axes are situated
along the longitude of the tube and perpendicular to the light bulbs.
Thus, this arrangement ensures that the fibers collect diffuse light
coming from the sample seeds.

Prior to collection of the NIR absorbance spectra, the instrument
was allowed to warm to its operating conditions for at least an hour.
At the start of a batch of 10 samples, a dark spectrum (mean of 10
spectra) was taken by shutting off power to the light source and
room lights followed by a reference spectrum taken from a thin
white disk of Spectralon diffuse reflectance standard (Labsphere
Inc., North Sutton, NH) positioned in the center of the tube. The
reference spectrum was taken after allowing the lamps to re-warm
for a minimum of three min. The exposure or integration time was
fixed at 43 ms for all spectra acquisitions.

Each sample was placed in a vibratory feeder that dropped the
kernels individually through the instrument. As a kernel moved
down the light tube, its presence was sensed by the fiber-optic
switch at the top, which triggered a small electronic time delay. At
the end of the delay, the spectrometer was triggered to acquire
Table 1
Descriptive statistics of the constituent composition of samples used for calibration and

Calibration set

Mean SD CV Min Max N

Relative contents (%)
TRP 0.09 0.02 20 0.06 0.12 70
LYS 0.41 0.08 20 0.25 0.57 62
CP 11.35 1.17 10 9.32 14.79 70
OIL 4.32 0.76 18 2.62 6.08 70
SSC 4.73 1.26 27 2.03 7.50 68

Absolute contents (mg kernel�1)
TRP 0.21 0.07 35 0.09 0.43 70
LYS 0.96 0.36 38 0.42 2.20 62
CP 26.55 7.94 30 13.45 47.68 70
OIL 10.17 3.63 36 3.81 23.11 70
SSC 10.90 3.09 28 4.85 19.00 68

Mass 0.24 0.07 29 0.10 0.48 70

TRP: Tryptophan; LYS: Lysine; CP: Crude Protein; OIL: Oil content; SSC: Soluble sugar con
Mean�100%; Range: Minimum�Maximum; N: No. of samples.
a spectrum, and to send the data to the computer. Absorbance
values were automatically computed and stored for each kernel.

2.3. Reference values and data analysis

Mean absorption spectra were computed by averaging the
spectra of the kernels within each sample. A calibration file for
each constituent was prepared by merging the spectra and the
reference values, using either the relative percentage or computed
absolute amount per kernel. The five constituents: crude protein,
lysine, tryptophan, oil and soluble sugar contents were previously
analyzed using appropriate reference methods. Briefly, these
methods were: oil, AOAC Method 7.044 (AOAC, 1975);
protein determined by Technicon Autonalyzer II – Industrial
method #334–74, 1977; tryptophan was determined by a colori-
metric method based on glyoxilic acid; lysine was determined by
the colorimetric method given by Tsai et al. (1972). All represent
bulk reference values expressed on a dry matter basis (relative
contents), and were provided by CIMMYT. The absolute constituent
amount for each sample was computed by multiplying the mean
kernel mass by the relative contents. In quantifying the absolute
constituent amount, it was assumed that the samples had
approximately the same level of equilibrium moisture content. It is
important to note that this is technically not an absolute amount,
since relative contents are typically expressed on some standard
moisture contents (MC). Moisture determination was not possible
due to the small sample size, and the need to preserve the sample.

Eighty percent of the total samples were randomly selected for
the calibration set, and the remaining 20% were used for the vali-
dation set. PLSR with cross-validation was used to develop models
for each of the constituents from the calibration set. This was
accomplished using the ParLeS software (Viscarra Rossel, 2007a),
with the best models selected based on the value of the root mean
square error (RMSE) approaching a minimum as factors were
increased. Spectral pre-processing procedures using mean
centering to zero, multiplicative scatter correction (MSC) and
standard normal variate (SNV) were explored in the analysis. The
spectral range was limited to 950–1650 nm because low signal-to-
noise ratios are usually found at the edges of the spectral range.
While the cross-validation procedure systematically removed one
sample at a time (leave-one-out) in the PLSR analysis to calculate
the beta coefficients, the capabilities of the models for prediction
were evaluated using the validation set.

Bagging PLSR has been previously shown to improve a model’s
accuracy in predicting constituent values, the details of which are
validation.

Validation set

Mean SD CV Min Max N

0.08 0.02 25 0.05 0.12 17
0.43 0.10 24 0.28 0.56 16

11.67 0.97 8 10.00 13.13 17
4.29 0.56 13 3.50 5.55 17
4.81 1.64 34 2.65 8.08 17

0.19 0.07 35 0.06 0.32 17
1.01 0.28 28 0.54 1.60 16

30.44 11.30 37 18.09 55.77 17
11.80 6.43 55 3.37 29.23 17
10.96 3.45 31 6.18 16.85 17

0.24 0.06 25 0.16 0.38 17

tent; Mass: Kernel mass, g SD: Standard deviation; CV: Coefficient of variation¼SD/



Table 2
Pearson correlation coefficient matrix for the five reference constituents.

Relative contents Absolute contents

TRP LYS CP OIL SSC TRP LYS CP OIL SSC

TRP 1.00 1.00
LYS 0.86 1.00 0.95 1.00
CP �0.01 0.22 1.00 0.76 0.80 1.00
OIL 0.21 0.27 0.01 1.00 0.79 0.79 0.86 1.00
SSC 0.04 �0.12 �0.21 �0.10 1.00 0.33 0.26 0.33 0.42 1.00
Mass �0.01 0.08 0.14 0.42 �0.46 0.79 0.80 0.96 0.92 0.42

TRP: Tryptophan; LYS: Lysine; CP: Crude Protein; OIL: Oil contents; SSC: Soluble
sugar contents; Mass: Kernel mass.

J.G. Tallada et al. / Journal of Cereal Science 50 (2009) 381–387384
discussed by Viscarra Rossel (2007b) and Breiman (1996). Twenty-
five bootstrap sets were prepared by randomly selecting samples
with replacement. This sampling procedure likely resulted in some
samples being selected two, three or more times within a set. The
number of samples in each set was about 66% of the calibration set
available for a constituent. Each set was analyzed using PLSR with
cross-validation as described above. The final prediction model was
derived from the average of the beta coefficients of the 25 sets with
the factor level the same for each set. The models were similarly
validated using the same validation set.
3. Results and discussion

3.1. Description of samples

A statistical summary of characteristics for tryptophan (TRP),
lysine (LYS), crude protein (CP), oil and soluble sugar contents (SSC)
for the calibration and prediction sets are shown in Table 1. There
was a fairly large constituent variation in the samples. For relative
contents, SSC had the highest coefficient of variation (CV) while CP
had the least. Using their absolute contents, the CV values signifi-
cantly increased, except for soluble sugar contents which essen-
tially remained constant.
Table 3
Calibration statistics for the five reference constituents using relative contents (%) and abs
squares regression with cross-validation.

Relative contents (%)

Constituent Nf SECV R2cv SEP R2p R

Mean centered spectra
TRP 6 0.02 0.28 0.02 0.41 1
LYS 6 0.08 0.13 0.07 0.56 1
CP 7 1.00 0.40 0.70 0.65 1
OIL 6 0.72 0.15 0.58 0.07 1
SSC 7 1.16 0.32 1.28 0.03 0
Mass

Mean centered spectraþ MSC
TRP 6 0.02 0.31 0.01 0.54 1
LYS 6 0.07 0.19 0.08 0.47 1
CP 8 0.70 0.64 0.47 0.75 1
OIL 7 0.71 0.17 0.46 0.29 1
SSC 6 1.08 0.37 1.45 0.02 0
Mass

Mean centered spectraþ SNV
TRP 6 0.02 0.31 0.01 0.54 1
LYS 6 0.07 0.19 0.08 0.46 1
CP 8 0.70 0.64 0.47 0.75 2
OIL 7 0.72 0.17 0.47 0.29 1
SSC 6 1.08 0.37 1.45 0.02 0
Mass

TRP: Tryptophan; LYS: Lysine; CP: Crude Protein; OIL: Oil contents; SSC: Soluble sugar
validation; SEP: Standard error of prediction, %; R2cv: Coefficient of determination for
prediction; RPD: Ratio of standard deviation to standard error of prediction; Nf: No. of P
To achieve a robust prediction model for a target constituent,
a broad range of reference values are needed to avoid predictions
beyond what are established by the calibration. By using a wide
range of genetic material, this condition was easily achieved.
Additionally, the levels of the constituents should be large enough
to affect the absorbance of light energy in the spectrum.

Table 2 shows the Pearson correlation coefficient matrices for
the relative and absolute contents between the five constituents,
which were computed using the entire sample set. The relative
contents of TRP and LYS had a reasonably high correlation that
significantly increased when their absolute contents were consid-
ered. This suggests that any calibration conducted with one of these
constituents would allow for prediction of the constituent value for
the other. These amino acids are building blocks for protein
complexes, but a correlation between them and crude protein for
relative contents was practically absent. The correlations were
slightly significant when absolute contents were considered. The
same observations were found between OIL and CP contents. SSC
did not correlate with any of the other constituents in both relative
and absolute contents.

Interestingly, the mean kernel mass correlated well with the
absolute amounts of CP and OIL constituents. Mean kernel mass
correlated less with the amino acid absolute contents, and was
uncorrelated with SSC. The relative contents of crude protein and
oil both had a narrow range of values (low CV). The low CV caused
the computation of the absolute contents of these constituents to
be dependent on the size of the kernels that had a similar endo-
sperm-to-germ ratio. However, what we typically want to achieve
is the ability to predict relative constituent levels in order to
identify individual kernels that will advance to the next stages in
the breeding program and save fieldwork and costs in screening
material.

The mean spectral profile of the 87 samples used in the study
had the usual significant absorption peaks between 975–1025 nm
and at 1450 nm for moisture, and 1175–1225 nm for protein. The
scattering of the spectra could be easily resolved by applying
a mean centering to zero as a pre-processing option. Multiplicative
olute contents (mg kernel�1)for spectra in the 950–1650 nm range, and partial least

Absolute contents (mg kernel�1)

PD Nf SECV R2cv SEP R2p RPD

.38 3 0.04 0.73 0.05 0.40 1.30

.15 6 0.20 0.68 0.18 0.60 1.58

.42 6 2.88 0.87 3.64 0.89 3.15

.02 9 2.41 0.57 2.49 0.88 2.53

.80 6 2.88 0.16 2.71 0.34 1.31
6 0.02 0.90 0.02 0.88 2.98

.54 4 0.04 0.70 0.06 0.43 1.20

.01 4 0.21 0.66 0.21 0.48 1.40

.74 6 3.40 0.82 4.08 0.87 2.33

.13 9 2.32 0.60 2.98 0.82 2.14

.77 5 2.90 0.14 2.90 0.25 1.21
6 0.03 0.81 0.03 0.76 2.13

.55 4 0.04 0.69 0.06 0.43 1.17

.17 4 0.21 0.65 0.20 0.48 1.38

.02 6 3.42 0.81 4.48 0.87 2.56

.22 9 2.33 0.59 2.98 0.82 2.14

.76 5 2.90 0.14 2.90 0.25 1.22
6 0.03 0.81 0.03 0.76 2.17

contents; Mass: Kernel mass, g; SECV, %: Standard error of calibration with cross-
calibration with cross-validation; R2p: Coefficient of determination for validation/
LSR factors; MSC: Multiplicative scatter correction; SNV: Standard normal variate.
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Fig. 2. Beta coefficient spectra of the 25 bagging PLSR calibration models for relative contents of crude protein and tryptophan, and kernel mass.
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scattering correction (MSC) was also explored along with the
standard normal variate (SNV) pre-treatment in the analysis. MSC
was shown by Armstrong (2006) and Cogdill et al. (2004) to be able
to remove spectral noise.

Calibrations between the spectrum of individual kernels and
their reference values would be ideal. However, because of limita-
tions in the sample size and the use of reference methods that
require a large amount of sample for reliable measurements, bulk
values were matched to the bulk spectra of the samples. In the case
of this study, the best estimator of the bulk spectra would be the
mean of the spectra of the individual kernels comprising the
sample (Delwiche and Hruschka, 2000). Some levels of accuracy
might be lost in the procedure. However, the predictive perfor-
mance of the sorter instrument, which employs a novel technique
in measuring the NIR spectra, was a prime consideration in this
study.

3.2. Calibration models for relative constituent contents

Table 3 shows the results of a partial least squares regression for
the relative amount of the constituents. Consistent with the expe-
rience of Baye et al. (2006), it was difficult to obtain useful
prediction models when relative constituent contents of the
samples were considered in the calculations. Following the guide-
lines for interpretation of modeling results that were given by
Williams and Norris (2001), Williams (2005), and using the coef-
ficient of determination (R2) as cited by Kovalenko et al. (2006), the
best model obtained for CP is suitable for sample screening with an
R2 of 0.75 for the prediction set and a standard error of prediction
(SEP) of 0.47 when corrections for spectral scattering (MSC or SNV)
were applied with mean spectral centering to zero. Apparently,
models for TRP appear suitable for very rough sample screening.
However, because of significant differences between the cross-
validation and prediction R2 values, the models may seem to be less
stable but nevertheless show a possibility for calibration. In
contrast, models for LYS have shown greater differences between
the two R2 values, implying that an accurate prediction is unlikely.
Kovalenko et al. (2006) noted that the greatest challenge for
developing calibration models for amino acids is how ‘‘to exceed
the correlation between amino acids and protein concentrations’’,
which this study has shown to be possible, particularly for TRP.

Calibration models that used either MSC or SNV spectral pre-
processing procedures produced better statistics than mean
centering-to-zero alone. Both MSC and SNV helped to reduce the
scattering of sample spectra due to the operation of the NIR sorting
instrument. As kernels tumble down through the instrument’s light



Table 4
Model statistics for the selected three significant constituents using relative
contents data (%) and Bagging PLSR with cross-validation.

Constituent Nc Nf SEC R2c Np SEP R2p RPD

TRP 70 6 0.014 0.649 17 0.016 0.440 1.34
CP 70 7 0.775 0.679 17 0.657 0.679 1.48
Mass 70 6 0.018 0.965 17 0.020 0.890 2.98

TRP: Tryptophan; CP: Crude Protein; Mass: Kernel mass; SEC: Standard error of
calibration (%); R2c: Coefficient of determination for calibration; SEP: Standard error
of prediction (%); R2p: Coefficient of determination for validation/prediction; RPD:
Ratio of standard deviation to standard error of prediction; Nc: No. of samples for
calibration; Np: No. of samples for validation/prediction; Nf: No. of PLSR factors.
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tube, aside from interrogating multiple points on the surface by the
two bifurcated probes, the motion creates variability in the distance
from the points to the probes and the spectral data. MSC is less
attractive to use, because it requires a characteristic reference
spectrum from the calibration set against which individual sample
spectra are regressed upon (Maleki et al., 2006). On the other hand,
SNV implements a simpler algorithm that scales the spectra and
minimizes sample presentation effects (Barnes et al., 1989), which
gave performance levels similar to those seen with MSC. The
prediction plots of the constituents are shown in Fig. 2 for the models
using mean centering and SNV.

3.3. Calibration models for absolute constituent contents

Table 3 also shows the calibration results for the absolute
contents of the five constituents for three pre-processing data
treatments. There was significant improvement in the calibration
using absolute contents data compared to the relative contents data
particularly for CP and OIL. CP still showed the highest R2p (0.87)
followed by the OIL contents, then the amino acids (TRP and LYS).
SSC remained poorly predicted. Comparing the R2cv and R2p values,
the TRP, LYS, and OIL calibration models do not appear to be stable.
The model statistics can easily vary with the random selection of
samples for calibration and validation sets.

The study of Baye et al. (2006) on maize concluded that single
kernel near infrared spectroscopy most likely reports the absolute
contents of constituents that account for the mass of individual
kernels. They further explained that regressions based on relative
contents would be less accurate because any changes in the
compositional amount of a constituent are ‘‘not translated into
differences within the NIR spectra.’’ Gergely and Salgo (2007) made
the same conclusions in their study on wheat kernel compositional
changes at different stages of development.

As demonstrated in Table 3, a calibration model suitable for
rough sample screening application of kernel mass was found
better when mean centering-to-zero alone is used than when using
either MSC or SNV pre-treatments. This could be explained by the
fact that the size and geometry of the kernels can affect the spectra
as the kernels tumble down the light tube. This finding may have
dual implications. First, this could eliminate a separate step for
measuring individual kernel mass or estimating average kernel
mass from bulk weights. Second, one can easily convert between
relative and absolute contents of the constituents. However, the
correlation matrix (Table 2) suggests a possible complication in the
prediction of absolute contents of CP, TRP, LYS and OIL contents
because of their seemingly high correlation with kernel mass. The
predictions for these absolute constituent contents are most likely
estimated indirectly from the kernel mass. Therefore, future studies
should carefully account for the correlations existing between the
absolute contents of the constituents and kernel mass.

3.4. Bagging PLSR

The results of bagging PLSR analysis are shown in Table 4 for
relative contents of TRP and CP, and kernel mass, using mean
centered NIR spectra. Viscarra Rossel (2007b) found bagging PLSR
to be more robust than the normal PLSR with cross-validation, less
prone to over fitting, improved prediction and provides statistical
measures of the model. For this case, the two methods of model
development yielded statistically similar models. The case for being
more robust with future samples is not readily apparent. An
interesting feature of bagging PLSR is that if the number of factors is
increased, the model statistics continue to improve significantly,
whereas for PLSR with cross-validation, no real improvement is
realized beyond the level suggested by the RMSE-factor plot. It is
not readily apparent how much the bagging model may be over-fit
to the data for these cases. Some examples of beta coefficient
spectra using the bagging PLSR technique are shown in Fig. 2. Note
that there was a substantial range of beta coefficient values at
a wavelength. However, they tend to aggregate into a central value,
such that a characteristic spectrum may be derived, and can serve
as an unbiased estimate of the true beta coefficient spectrum. This
would then give a better calibration model for a constituent, reduce
potential experimental errors due to calibration sample selection,
which PLSR is particularly sensitive to, and improve the robustness
of predictions in the long run.
4. Conclusion

Single kernel NIR spectroscopy can be used to predict the
compositional levels of some constituents for maize using the rapid
single kernel NIR sorting instrument and partial least squares
regression. While the calibration models using either MSC or SNV
for relative contents of crude protein and kernel mass were found
to be suitable for rough sample screening based on their coeffi-
cients of determination, the models are less useful for all other
constituents investigated. Further validation of the models is
needed. Because of relatively high levels of correlation between
most constituents and kernel mass, the calibration models for
absolute contents were found to be less promising, even though
they show good modeling statistics. Finally, bagging PLSR model
accuracy was comparable to that of PLSR with cross-validation.
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