Search National Agricultural Library Digital Collections

NALDC Record Details:

Follicular determinants of pregnancy establishment and maintenance

Permanent URL:
http://handle.nal.usda.gov/10113/59388
File:
Download [PDF File]
Abstract:
Synchronization of dominant follicle development and control of ovulation/oocyte retrieval are commonly used assisted reproductive technologies in both cattle and humans. The final maturation of the dominant follicle is intimately tied to the final maturation of the oocyte, preovulatory secretion of estradiol, preparation of follicular cells for luteinization, postovulatory secretion of progesterone and endocrine control of the oviductal and uterine environment for gamete and embryo development. The physiological maturity of a dominant/ovulatory follicle can affect the establishment and maintenance of pregnancy. Premature induction of the ovulatory process can reduce pregnancy rates and increase late embryonic/fetal mortality in cattle, which is likely mediated through inadequate oocyte competence and a compromised maternal environment. Oocyte competence increases with follicular maturity and is dependent upon acquisition of a complete complement of mRNA transcripts and establishment of the appropriate epigenetic marking of the oocyte genome before the preovulatory gonadotropin surge. Preovulatory secretion of estradiol is a reflection of follicular maturity and affects the oocyte, follicular cells, oviduct and uterus. The corpus luteum is a continuation of follicular maturation and rate of progesterone secretion following ovulation is linked to fertility. Advancements in our understanding of how the follicular microenvironment affects pregnancy establishment and maintenance will improve the efficiency of assisted reproductive technologies in all species. The purpose of this review is to discuss how follicular microenvironment, oocyte competence, preovulatory secretion of estradiol and postovulatory secretion of progesterone can affect pregnancy establishment and embryo/fetal survival, with an emphasis on cattle.
Author(s):
Ky G. Pohler , Thomas W. Geary , Jacqueline A. Atkins , George A. Perry , Emma M. Jinks , Michael F. Smith
Note:
USDA Scientist Submission
Source:
Cell Tissue Research 2012-09 v.349 no.3
Language:
English
Publisher:
Springer-Verlag
Year:
2012
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.