Search National Agricultural Library Digital Collections

NALDC Record Details:

Symbiosomes: temporary moonlighting organelles

Permanent URL:
http://handle.nal.usda.gov/10113/58761
File:
Download [PDF File]
Abstract:
Nitrogen fixation is the most important biological process on earth, second only to photosynthesis. The enzyme, nitrogenase, which catalyzes the reduction of atmospheric dinitrogen to ammonium, is encoded into the genomes of a few members of the a-, ß-and '-proteobacteria. The primary route of fixed nitrogen into the biosphere occurs via the symbiosis of nitrogen-fixing a-proteobacteria with leguminous plants. The symbiosis forms a novel organ on the roots and in a few cases on stems of the plant referred to as a nodule that contains specialized compartments affording spatial separation of the symbionts within modified plant cells. Upon infection and throughout the symbiosis the bacteria are encased within a plant derived membrane vesicle called the symbiosome (also called the peri-bacteroid membrane). Within the symbiosome, the bacteria differentiate into bacteroids, which express nitrogenase. The intervening space between the symbiosome membrane and the bacteroid is the symbiosome space. All nutrients and signals must traverse the symbiosome space, but there are few reports attempting to elucidate the functional purpose of this space. The majority of our knowledge of the symbiosome is derived from microbial mutants that affect symbiosome development and the cytolocalization of plant gene products. It is known that this space is populated by proteins contributed by both symbionts making it a unique, confluent inter-kingdom domain. Understanding the functional attributes of the space will lead to enhancing nitrogen fixation capacity and ultimately to extending the range of plant species capable of hosting symbiotic nitrogen-fixing bacteria.
Author(s):
Hari Krishnan
Subject(s):
alpha-Proteobacteria , genes , mutants , nitrogen , nitrogen fixation , nitrogen-fixing bacteria , nitrogenase , nutrients , organelles , proteins , roots , stems , symbionts , symbiosis
Note:
USDA Scientist Submission
Source:
Biochemical Journal 2014 v.460
Language:
English
Year:
2014
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.