Search National Agricultural Library Digital Collections

NALDC Record Details:

Red Clover HCT2, a Hydroxycinnamoyl-Coenzyme A:Malate Hydroxycinnamoyl Transferase, Plays a Crucial Role in Biosynthesis of Phaselic Acid and Other Hydroxycinnamoyl-Malate Esters in Vivo

Permanent URL:
http://handle.nal.usda.gov/10113/56729
Abstract:
In red clover (Trifolium pratense) leaves, phaselic acid (2-O-caffeoyl-l-malate) accumulates to several mmol kg−1 fresh weight and is a crucial component of a natural system that prevents protein breakdown during harvest and storage of this forage crop. Previously, we identified HCT2, a red clover gene encoding a hydroxycinnamoyl-Coenzyme A (CoA) hydroxycinnamoyl transferase capable of transferring p-coumaroyl and caffeoyl moieties from their CoA derivatives to malic acid to form the corresponding hydroxycinnamoyl-malate esters in vitro. Here, we carried out a detailed kinetic analysis of the enzyme and examined its in vivo function in red clover via reverse genetics. The kinetic analysis indicates that in vitro, despite similar Km values for the tested hydroxycinnamoyl-CoA derivatives, HCT2 favors transfer to malate of p-coumaroyl and feruloyl moieties over caffeoyl moieties by greater than 5-fold. Reverse reaction (transfer of hydroxycinnamoyl moieties from malate to CoA) by HCT2 was observed with p-coumaroyl-malate but not phaselic acid. Analysis of red clover plants down-regulated for HCT2 expression via RNA interference showed a significant and substantial correlation between HCT2 mRNA levels and phaselic acid accumulation (P < 0.005). In several of the HCT2-silenced plants, phaselic acid and p-coumaroyl-malate levels were reduced to <5% that of wild-type controls. These reductions resulted in easily observable phenotypes including reduced polyphenol oxidase-mediated browning and a reduction in blue epidermal fluorescence under ultraviolet light. These results demonstrate a crucial role for HCT2 in phaselic acid accumulation in red clover and define a previously undescribed pathway for the biosynthesis of hydroxycinnamoyl-malate esters in plants.
Author(s):
Michael L. Sullivan , Robert Zarnowski
Subject(s):
RNA interference , Trifolium pratense , biosynthesis , coenzyme A , enzyme kinetics , enzymes , esters , fluorescence , forage crops , genes , leaves , malic acid , messenger RNA , phenotype , proteins , ultraviolet radiation
Source:
Plant physiology 2011 v.155 no.3
Language:
English
Year:
2011
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.