Search National Agricultural Library Digital Collections

NALDC Record Details:

Variation of acephate susceptibility and correlation with esterase and glutathione S-transferase activities in field populations of the tarnished plant bug, Lygus lineolaris

Permanent URL:
http://handle.nal.usda.gov/10113/54362
File:
Download [PDF File]
Abstract:
The tarnished plant bug (TPB) has increasingly become an economically important pest of cotton. Heavy dependence on insecticides, particularly organophosphates and pyrethroids, for TPB control facilitated resistance development to multiple classes of insecticides. To better understand resistance and explore ways to monitor resistance in field populations, this study examined acephate susceptibility and the activities of two major detoxification enzymes in nine field populations collected in the Delta region of Mississippi and Arkansas in 2010. Two Arkansas populations from Reed and Backgate had 3.5- and 4.3-fold resistance to acephate, as compared to a susceptible laboratory strain. Extensive planting of cotton and heavy chemical sprays is a major driving force for resistance development to acephate in Mid-south cotton growing areas. Reduced susceptibility to acephate was highly correlated with elevated esterase activities. The acephate-resistant populations from Backgate, Lula, and Reed consistently had higher (up to 5.3-fold) esterase activities than susceptible populations. Regression analysis of LC50s with kinetic esterase activities revealed a significant polynomial quadratic relationship with R2 up to 0.89. Glutathione S-transferase (GST) also had elevated activity in most populations, but the variations of GST activities were not significantly correlated with changes of acephate susceptibility. Finally, examination of esterase and GST inhibitors indicated that suppression rates (up to 70%) by two esterase inhibitors in 2010 were slightly lower than those detected in 2006, and ethacrynic acid (EA) inhibited GST effectively in both years. Two other GST inhibitors (sulfobromophthalein and diethyl maleate) displayed significantly lower suppression rates in 2010 than those detected in 2006, suggesting a potential genetic shift in pest populations and a necessity of continued monitoring for insecticide resistance with both bioassay and biochemical approaches. Results indicated that using major detoxification enzyme activities for resistance monitoring may provide insight into acephate resistance in field populations of TPB.
Author(s):
Yu Cheng Zhu , Randall Luttrell
Subject(s):
Lygus lineolaris , acephate , at-risk population , bioassays , cotton , enzyme activity , esterases , extensive farming , glutathione transferase , insecticide resistance , maleates , pest monitoring , pest resistance , pyrethrins , regression analysis , Arkansas , Mississippi Delta region
Source:
Pesticide biochemistry and physiology 2012 July v.103 no.3
Language:
English
Publisher:
Elsevier Inc.
Year:
2012
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.