Search National Agricultural Library Digital Collections

NALDC Record Details:

Wheat strip effects on nutrient loads following variable manure applications

Permanent URL:
http://handle.nal.usda.gov/10113/54310
Abstract:
Vegetative filters have been found to significantly reduce nutrient loads in runoff. This study was conducted to: (1) evaluate the effects of a narrow wheat strip, varying manure application rates, and different overland flow rates on runoff nutrient loads following application of beef cattle manure; (2) determine the upper capacity of a narrow wheat strip to reduce nutrient loads by applying excessive amounts of manure; and (3) compare the effectiveness of narrow wheat strips and grass hedges in reducing runoff nutrient loads. A 1.4 m wide strip of actively growing winter wheat was located at the bottom of selected 0.75 m wide by 4.0 m long plots. Three 30 min simulated rainfall events, separated by 24 h intervals, were applied at an intensity of 70 mm h-1 to the plots. The wheat strips were effective in reducing runoff loads of NO3-N, NH4-N, and total nitrogen (TN). Runoff loads of dissolved reactive phosphorus (DP), particulate phosphorus (PP), total phosphorus (TP), NH4-N, and TN were significantly influenced by manure application rate. The application of m a nure to meet a 2-year rather than a 1-year corn P requirement did not significantly increase DP, PP, or TP loads. However, application of manure to meet a 4-year P requirement resulted in DP, PP, and TP loads that were significantly greater than those obtained for a 2-year P requirement. Runoff rate significantly affected each of the measured water quality parameters. The actively growing wheat strips were much less effective than grass hedges in reducing runoff nutrient loads.
Author(s):
Thayer, C.A. , Gilley, J.E. , Durso, L.M. , Marx, D.B.
Subject(s):
Triticum aestivum , agricultural runoff , ammonium nitrogen , application rate , cattle manure , corn , filter strips , grasses , nitrate nitrogen , overland flow , phosphorus , pollution load , rainfall simulation , water quality , winter wheat
Note:
Includes references
Source:
Transactions of the ASABE 2012 Mar-Apr, v. 55, no. 2
Language:
English
Year:
2012
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.