Search National Agricultural Library Digital Collections

NALDC Record Details:

Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils

Permanent URL:
http://handle.nal.usda.gov/10113/53875
Abstract:
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH3) emissions from dairy farms, and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH3 emissions and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate impacts of CP and tannin feeding on slurry chemistry, NH3 emissions and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels (g kg-1) of dietary CP: 155 (LCP) and 168 (HCP) each fed at four levels (g kg-1) of dietary tannin extract [a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees]: 0 (0T), 4.5 (LT), 9.0 (MT) and 18.0 (HT) were applied to soil-containing lab-scale chambers, and NH3 emissions were measured 1, 3, 6, 12, 24, 36 and 48 h after slurry applications. During the 3 h to 48 h measurements periods, NH3 emissions from the HCP slurry were 1.5 to 2.6 times greater than from the LCP slurry. At trial"s end (48 h) however concentrations of inorganic N in soils were greater in HCP slurry-amended soils than in LCP-amended soils. Emissions from HT slurry were 28% to 49% lower than emissions from 0T slurry during the 24-h to 48-h measurements, yet these differences did not impact soil inorganic N levels. Cumulative NH3 emissions from the sandy loam soil were 1.1 to 1.2 times greater than from silt loam soil, a result which decreased soil inorganic N in the sandy loam compared to the silt loam soil. Larger scale and longer term field trails are needed to ascertain effectiveness of tannin extracts in abating NH3 loss from land-applied slurry, and the impact of tannin-containing slurry on soil N cycles.
Author(s):
Powell, J.M. , Aguerre, M.J. , Wattiaux, M.A.
Subject(s):
Castanea sativa , Holstein , Schinopsis , ammonia , crude protein , dairy cows , dairy manure , dietary protein , feeding level , gas emissions , nitrogen , sandy loam soils , silt loam soils , slurries , soil amendments , soil fertility , tannins , urea nitrogen
Note:
Includes references
Source:
Journal of environmental quality JEQ. 2011 Nov., v. 40, no. 6
Language:
English
Year:
2011
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.