Search National Agricultural Library Digital Collections

NALDC Record Details:

Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties

Permanent URL:
http://handle.nal.usda.gov/10113/49704
File:
Download [PDF File]
Abstract:
Biodiesel, defined as mono-alkyl esters of long-chain fatty acids derived from vegetable oils or animal fats, is an attractive renewable fuel alternative to conventional petroleum diesel fuel. Biodiesel produced from oils such as cottonseed oil and poultry fats suffer from extremely poor cold flow properties because of their high saturated fatty acid content. In the current study, Ethyl Levulinate (ethyl 4-oxopentanoate) was investigated as a novel, bio-based cold flow improver for use in biodiesel fuels. The cloud (CP), pour (PP), and cold filter plugging points (CFPP) of biodiesel fuels prepared from cottonseed oil and poultry fat were improved upon addition of ethyl levulinate at 2.5, 5.0, 10.0, and 20.0% (vol). Reductions of 4–5 °C in CP, 3–4 °C in PP and 3 °C in CFPP were observed at 20 vol % ethyl levulinate. The influence of ethyl levulinate on acid value, induction period, kinematic viscosity and flash point was determined. The kinematic viscosities and flash points decreased with increasing content of ethyl levulinate. All samples (≤15 vol % ethyl levulinate) satisfied the ASTM D6751 limit with respect to flash point, but none of the 20 vol % blends were acceptable when compared to the higher EN 14214 specification. Acid value and oxidative stability were essentially unchanged upon addition of ethyl levulinate. In summary, ethyl levulinate appears acceptable as a diluent for biodiesel fuels with high saturated fatty acid content.
Author(s):
Joshi, Hem , Moser, Bryan R. , Toler, Joe , Smith, William F. , Walker, Terry
Subject(s):
biodiesel , biobased products , cold , saturated fatty acids , cottonseed meal , animal fats and oils , viscosity , kinematics , oxidative stability , Southeastern United States
Format:
p. 3262-3266.
Note:
Includes references
Source:
Biomass and bioenergy 2011 July, v. 35, no. 7
Language:
English
Year:
2011
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.