Search National Agricultural Library Digital Collections

NALDC Record Details:

Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1

Permanent URL:
http://handle.nal.usda.gov/10113/49429
File:
Download [PDF File]
Abstract:
We investigated the individual effect of null mutations of each of the four sucrose-phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform-specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO₂] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO₂] levels. Carbon partitioning at ambient [CO₂] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non-structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5-bisphosphate regeneration-limited photosynthesis but not ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis, indicating a limitation of triose-phosphate utilization (TPU).
Author(s):
Sun, Jindong , Zhang, Jisen , Larue, Clayton T. , Huber, Steven C.
Subject(s):
Arabidopsis thaliana , sucrose , starch , photosynthesis , sucrose-phosphate synthase , isozymes , enzyme activity , carbohydrate content , cold stress , plant growth , gas exchange
Format:
p. 592-604.
Note:
Includes references
Source:
Plant, cell & environment 2011 Apr., v. 34, no. 4
Language:
English
Publisher:
Blackwell Publishing Ltd
Year:
2011
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.