Search National Agricultural Library Digital Collections

NALDC Record Details:

Active-site titration analysis of surface influences on immobilized Candida antarctica lipase B activity

Permanent URL:
http://handle.nal.usda.gov/10113/48187
Abstract:
Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements were made of the amount of lipase immobilized and the catalyst's tributyrin hydrolysis activity, along with a determination of the lipase's functional fraction by active-site titration. Soluble, purified lipase had an active fraction of 84%. Immobilization on the hydrophobic surface of macroporous poly(methylmethacrylate) resin resulted in the full retention the lipase active fraction, while immobilization on the hydrophobic surface of mesoporous, amorphous, octyl-modified silica allowed retention of just half of the lipase active fraction. The polar surface of unmodified mesoporous, amorphous silica bound the lipase in such a manner that all of the immobilized enzyme was active. Mesoporous, crystalline SBA-15 silica also bound lipase so that it all was active. The polar, non-porous surface of fumed silica retained only a small fraction (28%) of active lipase. Substantial differences were found among the various supports in their ability to preserve catalytic activity upon vacuum drying. These findings demonstrate that surface polarity alone is not the only determinant for immobilization, as hydrophobic poly(methylmethacrylate) and hydrophilic SBA-15 were equally competent as lipase supports. The ordered-channel mesostructure of SBA-15 may provide a critical balance of interactions with the enzyme to preserve its native conformation.
Author(s):
Laszlo, Joseph A. , Jackson, Michael , Blanco, Rosa M.
Subject(s):
Candida antarctica , triacylglycerol lipase , enzyme activity , immobilized enzymes , active sites
Format:
p. 60-65.
Note:
Includes references
Source:
Journal of molecular catalysis. B, Enzymatic 2011 Apr., v. 69, no. 1-2
Language:
English
Year:
2011
Collection:
Journal Articles, USDA Authors, Peer-Reviewed
File:
Download [PDF File]
Rights:
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.